Electronic Science and Technology ›› 2022, Vol. 35 ›› Issue (8): 58-65.doi: 10.16180/j.cnki.issn1007-7820.2022.08.010
Previous Articles Next Articles
LIU Han,WANG Wanxiong
Received:
2021-02-19
Online:
2022-08-15
Published:
2022-08-10
Supported by:
CLC Number:
LIU Han,WANG Wanxiong. Short-Term Power Demand Forecasting Based on SARIMA-GS-SVR Combined Model[J].Electronic Science and Technology, 2022, 35(8): 58-65.
Table 2.
Prediction results of models"
时间/h | 实际电 力需求 /MW | 预测模型 | ||||||
---|---|---|---|---|---|---|---|---|
SARIMA | SVR | GS-SVR | 指数 平滑法 | SARIMA- GS-SVR | ||||
00:00 | 26 342 | 26 471 | 27 187 | 27 034 | 27 182 | 26 407 | ||
01:00 | 25 091 | 25 248 | 26 314 | 25 652 | 26 217 | 25 179 | ||
02:00 | 24 180 | 24 422 | 25 575 | 24 770 | 25 457 | 24 294 | ||
03:00 | 23 652 | 23 980 | 24 842 | 24 313 | 24 983 | 23 849 | ||
04:00 | 23 540 | 23 870 | 24 535 | 24 399 | 24 634 | 23 718 | ||
05:00 | 24294 | 24 566 | 24 833 | 25 087 | 24 638 | 24 414 | ||
06:00 | 26 396 | 26 440 | 26 140 | 26 362 | 25 162 | 26 304 | ||
07:00 | 29 288 | 29 309 | 27 953 | 27 966 | 25 938 | 29 215 | ||
08:00 | 29 734 | 29 765 | 28 936 | 29 484 | 25 963 | 29 706 | ||
09:00 | 28 515 | 28 624 | 28 328 | 29 357 | 25 396 | 28 552 | ||
10:00 | 27 691 | 27 586 | 27 415 | 27 982 | 24 538 | 27 494 | ||
11:00 | 27 063 | 26 929 | 26 811 | 26 841 | 23 902 | 26 866 | ||
12:00 | 26 957 | 26 586 | 26 459 | 26 326 | 23 338 | 26 601 | ||
13:00 | 27 130 | 26 640 | 26 415 | 26 467 | 23 011 | 26 729 | ||
14:00 | 27 792 | 26 913 | 26 737 | 26 911 | 23 224 | 27 156 | ||
15:00 | 28 330 | 27 617 | 27 433 | 27724 | 23 671 | 28 187 | ||
16:00 | 29 083 | 28 377 | 28 375 | 28 869 | 24 920 | 28 837 | ||
17:00 | 30 403 | 29 958 | 29 773 | 30 411 | 26 775 | 29 980 | ||
18:00 | 32 294 | 32 296 | 31 565 | 32 113 | 29 437 | 32 330 | ||
19:00 | 33 691 | 33 690 | 32 615 | 33 513 | 31 568 | 33 566 | ||
20:00 | 33 092 | 33 072 | 32 179 | 33 863 | 31 242 | 32 976 | ||
21:00 | 32 084 | 31 948 | 30 906 | 32 462 | 30 585 | 31 924 | ||
22:00 | 30 622 | 30 290 | 29 511 | 30 522 | 29 620 | 30 313 | ||
23:00 | 28 326 | 28 111 | 28 192 | 28 789 | 28 269 | 28 265 |
[1] |
Matijaŝ M, Suykens J A K, Krajcar S. Load forecasting using a multivariate meta-learning system[J]. Expert Systems with Applications, 2013, 40(11):4427-4437.
doi: 10.1016/j.eswa.2013.01.047 |
[2] |
Ismail Z, Yahya A, Mahpol. Forecasting peak load electricity demand using statistics and rule based approac[J]. American Journal of Applied Sciences, 2009, 6(8):1618-1625.
doi: 10.3844/ajassp.2009.1618.1625 |
[3] |
Mordjaoui M, Boudjema B. Forecasting andmodelling electricity demand using anfis predictor[J]. Journal of Mathematics and Statistics, 2011, 7(4):275-281.
doi: 10.3844/jmssp.2011.275.281 |
[4] | 朱素玲. 组合预测中单项模型选择的研究及其权重系数优化[D]. 兰州: 兰州大学, 2010. |
Zhu Suling. The single model chosen and parameters optimization for combined forecasting model[D]. Lanzhou: Lanzhou University, 2010. | |
[5] | 白朝阳, 宋林杰, 李晓琳. 基于EMD-PSO-LSSVR的物料需求组合预测模型[J]. 统计与决策, 2018, 34(18):185-188. |
Bai Zhaoyang, Song Linjie, Li Xiaolin. Combination forecast model of material demand based on EMD-PSO-LSSVR[J]. Statistics & Decision, 2018, 34(18):185-188. | |
[6] | 何永秀, 王跃锦, 杨丽芳, 等. 基于最小二乘支持向量机的居民用电预测研究[J]. 电力需求侧管理, 2010, 12(3):19-23. |
He Yongxiu, Wang Yuejin, Yang Lifang, et al. Research on residential electricity prediction based on the least squares support vector machine[J]. Power Demand Side Management, 2010, 12(3):19-23. | |
[7] | 杨晨蕾, 包腾飞, 胡安玉, 等. 考虑残差的小波G-Verhulst-ARIMA大坝变形组合预测模型及应用[J]. 水电能源科学, 2020, 38(12):94-97. |
Yang Chenlei, Bao Tengfei, Hu Anyu, et al. Wavelet G-Verhulst-ARIMA combined prediction model for dam deformation considering residual and its application[J]. Water Resources and Power, 2010, 38(12):94-97. | |
[8] | 王相宁, 杨杰. 基于SSA-ARIMA-HPSO-SVM组合模型的汇率预测[J]. 统计与决策, 2020, 36(23):134-138. |
Wang Xiangning, Yang Jie. Exchange rate forecast based on SSA-ARIMA-HPSO-SVM combined model[J]. Statistics & Decision, 2020, 36(23):134-138. | |
[9] | 王旭东. 基于深度学习的短期家庭电力需求预测[D]. 杭州: 中国计量大学, 2019. |
Wang Xudong. Short-termhousehold electricity demand forecasting based on deep learning[D]. Hangzhou: China Jiliang University, 2019. | |
[10] | 沈放, 吴静进, 谢风连. 基于小波神经网络方法的电力需求预测[J]. 电网与清洁能源, 2017, 33(7):90-96. |
Shen Fang, Wu Jingjin, Xie Fenglian. Electricpower demand forecasting based on wavelet neural network method[J]. Power System and Clean Energy, 2017, 33(7):90-96. | |
[11] | 周德强, 武本令. 灰色BP神经网络模型的优化及负荷预测[J]. 电力系统保护与控制, 2011, 39(21):65-69. |
Zhou Deqiang, Wu Benling. Optimization and power load forecasting of gray BP neural network model[J]. Power System Protection and Control, 2011, 39(21):65-69. | |
[12] | 杨海柱, 江昭阳, 李梦龙, 等. 基于改进人工鱼群-蛙跳算法优化LSSVM参数短期负荷预测[J]. 电子科技, 2020, 33(12):67-74. |
Yang Haizhu, Jiang Zhaoyang, Li Menglong, et al. Parameters selection for LSSVM based on artificial fish swarm-shuffled frog jump algorithms optimization in short-term load forecasting[J]. Electronic Science and Technology, 2020, 33(12):67-74. | |
[13] | 王檬. 我国PMI指数预测—基于SARIMA模型[J]. 统计与管理, 2015(9):60-61. |
Wang Meng. Prediction of China PMI index-based on SARIMA model[J]. Statistics and Management, 2015(9):60-61. | |
[14] | Vapnik V N. Support vector method for function estimation[J]. Advances in Neural Information Processing Systems, 2001(9):281-287. |
[15] | 杨宇, 曾国辉, 黄勃. 基于人工鱼群算法和LS_SVM的变压器故障诊断[J]. 电子科技, 2020, 33(11):36-40. |
Yang Yu, Zeng Guohui, Huang Bo. A transformer fault diagnosis method integrating artificial fish swarm algorithm with least square support vector machine[J]. Electronic Science and Technology, 2020, 33(11):36-40. | |
[16] | 林浩, 李雷孝, 王慧. 支持向量机在智能交通系统中的研究应用综述[J]. 计算机科学与探索, 2020, 14(6):901-917. |
Lin Hao, Li Leixiao, Wang Hui. Survey on research and application of support vector machines in intelligent transportation system[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(6):901-917. | |
[17] |
Sousa J C, Jorge H M, Neves L P. Short-term load forecasting based on support vector regression and load profiling[J]. International Journal of Energy Research, 2014, 38(3):350-362.
doi: 10.1002/er.3048 |
[18] | 程诗尧, 武赫. 基于Holt-Winters和LSTM的组合模型在电能表需求预测中的应用[J]. 中国设备工程, 2020(15):207-209. |
Cheng Shiyao, Wu He. Application of combined model based on Holt-Winters and LSTM in demand forecast of electric energy meter[J]. China Plant Engineering, 2020(15):207-209. | |
[19] | Sun Y Y, Guo L L, Wang Y M, et al. The comparison of optimizing SVM by GA and grid search[C]. Yangzhou:Proceedings of the Thirteenth IEEE International Conference on Electronic Measurement & Instruments, 2017. |
[20] | 纪洁, 胡汉, 高远, 等. 基于遗传算法优化参数的支持向量机风电功率预测[J]. 电子测试, 2020(21):32-35. |
Ji Jie, Hu Han, Gao Yuan, et al. The wind power prediction based on the genetic algorithm to optimize parameters of support vector machine[J]. Electronic Test, 2020(21):32-35. | |
[21] | 颜晓娟, 龚仁喜. 基于改进遗传算法寻优的SVM风能短期功率预测[J]. 电测与仪表, 2014, 51(8):38-41. |
Yan Xiaojuan, Gong Renxi. Short-term wind power prediction based on SVM and improved genetic algorithm[J]. Electrical Measurement& Instrumentation, 2014, 51(8):38-41. |
[1] | JIANG Yinfang,HU Huajian,Guo Yongqiang,WU Bo. Experimental Study on Parameters Optimization of Magnetostrictive Sensor Backing Layer [J]. Electronic Science and Technology, 2021, 34(2): 68-73. |
[2] | ZHANG Qiukui,YI Yingping,ZHAO Jiran,XING Wei. Application Research of Microstrip Antenna Based on Polystry Dielectric Substrate [J]. Electronic Science and Technology, 2020, 33(4): 6-12. |
[3] | YANG Haizhu,JIANG Zhaoyang,LI Menglong,KANG Le. Parameters Selection for LSSVM Based on Artificial Fish Swarm-Shuffled Frog Jump Algorithms Optimization in Short-Term Load Forecasting [J]. Electronic Science and Technology, 2020, 33(12): 67-74. |
[4] | WU Yankai,ZHANG Wei,MA Yingman,LI Jiayang. Two Degree of Freedom PID Parameter Optimization Based on GA-PSO Fusion Algorithm [J]. Electronic Science and Technology, 2019, 32(10): 54-59. |