[1] |
吴展翔, 甘屹, 孙福佳. 基于STL模型的模具型腔分割算法研究及应用[J]. 电子科技, 2019, 32(7):56-59.
|
|
Wu Zhanxiang, Gan Yi, Sun Fujia. Research and application of mold cavity segmentation algorithm based on STL model[J]. Electronic Science and Technology, 2019, 32(7):56-59.
|
[2] |
He W, Wu M, Liang M, et al. CAP: Context-aware pruning for semantic segmentation[C]. Paris: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021.
|
[3] |
Zhao H, Qi X, Shen X, et al. ICNet for real-time semantic segmentation on high-resolution images[C]. Munich: Proceedings of the European Conference on Computer Vision, 2018.
|
[4] |
Yu C, Wang J, Peng C, et al. Bisenet: Bilateral segmentation network for real-time semantic segmentation[C]. Munich: Proceedings of the European Conference on Computer Vision, 2018.
|
[5] |
Yu C, Wang J, Peng C, et al. Learning a discriminative feature network for semantic segmentation[C]. Salt Lake City: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.
|
[6] |
Zhong Z, Lin Z Q, Bidart R, et al. Squeeze-and-attention networks for semantic segmentation[C]. Seattle: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.
|
[7] |
Fu J, Liu J, Tian H, et al. Dual attention network for scene segmentation[C]. Long Beach: Proceedings of the IEEE/ CVF Conference on Computer Vision and Pattern Recognition, 2019.
|
[8] |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]. Munich: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018.
|
[9] |
Wang Q L, Wu B G, Zhu P F, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]. Seattle: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020.
|
[10] |
Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
[11] |
Brostow G J, Fauqueur J, Cipolla R. Semantic object classes in video: A high-definition ground truth database[J]. Pattern Recognition Letters, 2009, 30(2):88-97.
doi: 10.1016/j.patrec.2008.04.005
|
[12] |
Cordts M, Omran M, Ramos S, et al. The cityscapes dataset for semantic urban scene understanding[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
|
[13] |
Chen Y, Li J, Xiao H, et al. Dual path networks[C]. Barcelona: Proceedings of the Thirty-first International Conference on Neural Information Processing Systems, 2017.
|
[14] |
Chen L C, Papandreou G, Kokkinos I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[C]. San Diego: Proceedings of the International Conference on Learning Representations, 2015.
|
[15] |
Li H, Xiong P, Fan H, et al. Dfanet: Deep feature aggregation for real-time semantic segmentation[C]. Long Beach: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.
|
[16] |
Poudel R P K, Liwicki S, Cipolla R. Fast-SCNN: Fast semantic segmentation network[C]. Cardiff: Proceedings of the Thirtieth British Machine Vision Conference, 2019.
|
[17] |
Pohlen T, Hermans A, Mathias M, et al. Full-resolution residual networks for semantic segmentation in street scenes[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
[18] |
Lin P, Sun P, Cheng G, et al. Graph-guided architecture search for real-time semantic segmentation[C]. Seattle: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.
|