[1] |
Lyu C, Wu N. Management guidelines for primary lung cancer:Chinese standards in clinical practice[J]. Chinese Journal of Cancer Research, 2019, 31(3):419-426.
|
[2] |
Silva A C, De Paiva A C, Nunes R A, et al. 3D shape analysis to reduce false positives for lung nodule detection systems[J]. Medical and Biological Engineering and Computing, 2017, 55(8):1199-1213.
|
[3] |
程顺达, 程颖, 孙士江. 基于机器学习的肿瘤智能辅助诊断方法[J]. 电子科技, 2022, 35(5): 56-59.
|
|
Cheng Shunda, Cheng Ying, Sun Shijiang. Tumor intelligent auxiliary diagnosis method based on machine learning[J]. Electronic Science and Technology, 2022, 35(5):56-59.
|
[4] |
Khosravan N, Bagci U. S4ND:Single-shot single-scale lung nodule detection[C]. Granada: International Conference on Medical Image Computing and Computer-Assisted Intervention,2018:794-802.
|
[5] |
孙华聪, 彭延军, 郭燕飞, 等. 3D多尺度深度卷积神经网络肺结节检测[J]. 中国图象图形学, 2021, 26(7): 1716-1725.
|
|
Sun Huacong, Peng Yanjun, Guo Yanfei, et al. 3D multi-scale deep convolutional neural networks in pulmonary nodule detection[J]. Journal of Image and Graphics, 2021, 26(7): 1716-1725.
|
[6] |
王乾梁, 石宏理. 基于改进YOLOv3的肺结节检测方法[J]. 中国医学物理学杂志, 2021, 38(9): 1179-1184.
|
|
Wang Qianliang, Shi Hongli. Pulmonary nodule detection based on improved YOLOv3[J]. Chinese Journal of Medical Physics, 2021, 38(9):1179-1184.
|
[7] |
李红光, 于若男, 丁文锐. 基于深度学习的小目标检测研究进展[J]. 航空学报, 2021, 42(7): 107-125.
|
|
Li Hongguang, Yu Ruonan, Ding Wenrui. Research development of small object traching based on deep learning[J]. Acta Aeronautica ET Astronautica Sinica, 2021, 42(7):107-125.
|
[8] |
Liu W, Anguelov D, Erhan D, et al. SSD:Single shot multibox detector[C]. Amsterdam: European Conference on Computer Vision,2016:21-37.
|
[9] |
Redmon J, Divvala S, Girshick R, et al. You only look once: Unified,real-time object detection[C]. Seattle: IEEE Conference on Computer Vision and Pattern Recognition, 2016:779-788.
|
[10] |
Redmon J, Farhadi A. YOLO9000:Better,faster,stronger[C]. Honolulu: IEEE Conference on Computer Vision and Pattern Recognition,2017:6517-6525.
|
[11] |
Redmon J, Farhadi A. YOLOv3:An incremental improvement[C]. Salt Lake City: IEEE Conference on Computer Vision and Pattern Recognition,2018:1-6.
|
[12] |
Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: Optimal speed and accuracy of object detection[C]. Seattle: IEEE Conference on Computer Vision and Pattern Recognition,2020:1-17.
|
[13] |
Ren S, He K, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
|
[14] |
He K, Gkioxari G, Dollár P, et al. Mask R-CNN[C]. Venice: IEEE International Conference on Computer Vision,2017:2980-2988.
|
[15] |
赵轩, 周凡, 余汉成. 基于改进特征提取及融合模块的YOLOv3模型[J]. 电子科技, 2022, 35(7):40-45.
|
|
Zhao Xuan, Zhou Fan, Yu Hancheng. Improved YOLOv3 model based on new feature extraction and fusion module[J]. Electronic Science and Technology, 2022, 35(7):40-45.
|
[16] |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8):2011-2023.
doi: 10.1109/TPAMI.2019.2913372
pmid: 31034408
|
[17] |
Woo S, Park J, Lee J Y, et al. CBAM:Convolutional block attention module[C]. Munich: The Fifteenth European Conference on Computer Vision,2018:3-19.
|
[18] |
Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design[C]. Nashville: IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021:13708-13717.
|
[19] |
Misra D. Mish:A self regularized non-monotonic neural activation function[EB/OL].(2019-4-2)[2023-1-11] https://arxiv.53yu.com/vc/arxiv/papers/1908/1908.08681v2.pdf.
|
[20] |
Wang J, Xu C, Yang W, et al. A normalized Gaussian Wasserstein distance for tiny object detection[EB/OL]. (2022-6-14)[2023-1-11] https://arxiv.53yu.com/abs/2110.13389.
|