Electronic Science and Technology ›› 2023, Vol. 36 ›› Issue (5): 62-70.doi: 10.16180/j.cnki.issn1007-7820.2023.05.010
Previous Articles Next Articles
SHI Jianke,QIAO Meiying,LI Bingfeng,ZHAO Yan
Received:
2021-12-06
Online:
2023-05-15
Published:
2023-05-17
Supported by:
CLC Number:
SHI Jianke,QIAO Meiying,LI Bingfeng,ZHAO Yan. Underwater Occlusion Target Detection Algorithm Based on Attention Mechanism[J].Electronic Science and Technology, 2023, 36(5): 62-70.
Figure 5.
Diagram of three improved triplet attentions (a)Fusion of improved non-local neural network and the left branch of triplet attention (b)Fusion of improved non-local neural network and the middle branch of triplet attention (c)Fusion of improved non-local neural network and the right branch of triplet attention"
Table 7.
Detection results of different detection algorithms"
方法 | 主干网络 | 海胆/% | 扇贝/% | 海星/% | 海参/% | mAP/% | 帧率/frames·s-1 |
---|---|---|---|---|---|---|---|
YOLOv3 | DarkNet-53 | 70.42 | 50.04 | 71.55 | 52.70 | 61.18 | 27 |
SSD300 | VGG-16 | 71.72 | 52.30 | 72.54 | 54.72 | 62.82 | 22 |
SSD512 | VGG-16 | 73.20 | 54.81 | 73.10 | 56.37 | 64.37 | 18 |
Faster R-CNN | VGG-16 | 73.35 | 54.03 | 72.52 | 55.32 | 63.81 | 13 |
Faster R-CNN | ResNet-50 | 75.10 | 57.02 | 74.17 | 56.35 | 65.66 | 12 |
Faster R-CNN | proposed | 77.14 | 60.25 | 77.60 | 59.20 | 68.55 | 10 |
Table 8.
Results of different attention mechanisms"
方法 | 海胆/% | 扇贝/% | 海星/% | 海参/% | mAP/% | 帧率/frames·s-1 |
---|---|---|---|---|---|---|
Baseline | 75.10 | 57.02 | 74.17 | 56.35 | 65.66 | 12 |
FRANet | 74.58 | 59.86 | 75.67 | 55.28 | 66.35 | 20 |
ResNet-50+SENet | 73.51 | 60.10 | 76.20 | 58.55 | 67.09 | 10 |
ResNet-50+CBAM | 71.34 | 59.56 | 72.74 | 56.36 | 65.00 | 9 |
ResNet-50+NNNet | 75.85 | 58.26 | 73.35 | 57.17 | 66.16 | 10 |
ResNet-50+TA | 74.24 | 57.52 | 74.94 | 57.55 | 66.06 | 12 |
ResNet-50+NNNet+TA | 76.23 | 58.75 | 76.25 | 58.68 | 67.47 | 7 |
Proposed | 77.14 | 60.25 | 77.60 | 59.20 | 68.55 | 10 |
Figure 9.
Detection results of different algorithms (a)Detection result of YOLOv3 (b)Detection result of FRANet (c)Detection result of SSD (d)ResNet-50 and non-local neural network fusion detection result (e)ResNet-50 and triplet attention fusion detection result (f)ResNet-50 and proposed attention fusion detection result"
Figure 10.
Visualization comparison of feature layer before and after backbone network fusion improved nonlocal neural network (a)Input image (b)Visualization result of the feature layer before using the improved triplet attention fusion (c)Visualization result of the feature layer after using the improved triplet attention fusion"
[1] | 林森, 赵颍. 水下光学图像中目标探测关键技术研究综述[J]. 激光与光电子学进展, 2020, 57(6):26-37. |
Lin Sen, Zhao Ying. Review on key technologies of target exploration in underwater optical images[J]. Laser and Optoelectronic Progress, 2020, 57(6):26-37. | |
[2] | 于红. 水产动物目标探测与追踪技术及应用研究进展[J]. 大连海洋大学学报, 2020, 35(6):793-804. |
Yu Hong. Research progress on object detection and tracking techniques utilization in aquaculture: A review[J]. Journal of Dalian Ocean University, 2020, 35(6):793-804. | |
[3] | 张胜虎, 马惠敏. 遮挡对于目标检测的影响分析[J]. 图学学报, 2020, 41(6):891-896. |
Zhang Shenghu, Ma Huimin. An analysis of occlusion influence on object detection[J]. Journal of Graphics, 2020, 41(6):891-896. | |
[4] | 赵晓飞, 于双和, 李清波, 等. 基于注意力机制的水下目标检测算法[J]. 扬州大学学报(自然科学版), 2021, 24(1):62-67. |
Zhao Xiaofei, Yu Shuanghe, Li Qingbo, et al. Underwater object detection algorithm based on attention mechanism[J]. Journal of Yangzhou University(Natural Science Edition), 2021, 24(1):62-67. | |
[5] |
Wei X Y, Yu L, Tian S W, et al. Underwater target detection with an attention mechanism and improved scale[J]. Multimedia Tools and Applications, 2021, 80(1):33747-33761.
doi: 10.1007/s11042-021-11230-2 |
[6] | Redmon J, Farhadi A. YOLOv3: An incremental improvement[C]. Salt Lake City: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2018:1-12. |
[7] | 邹梓吟, 盖绍彦, 达飞鹏, 等. 基于注意力机制的遮挡行人检测算法[J]. 光学学报, 2021, 41(15):157-165. |
Zou Ziyin, Gai Shaoyan, Da Feipeng, et al. Occluded pedestrian detection algorithm based on attention mechanism[J]. Acta Optica Sinica, 2021, 41(15):157-165. | |
[8] | Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module[C]. Munich: Proceedings of European Conference on Computer Vision, 2018:3-19. |
[9] |
Hu J, Shen L, Albanie S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8):2011-2023.
doi: 10.1109/TPAMI.2019.2913372 pmid: 31034408 |
[10] | Wang X L, Xiao T T, Jiang Y N, et al. Repulsion loss: Detecting pedestrians in a crowd[C]. Salt Lake City: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2018:7774-7783. |
[11] | Zhang S F, Wen L Y, Bian X, et al. Occlusion-aware R-CNN: Detecting pedestrians in a crowd[C]. Munich: Proceedings of European Conference on Computer Vision, 2018:637-653. |
[12] | 张莹, 刘子龙, 万伟. 基于Faster R-CNN的无人机车辆目标检测[J]. 电子科技, 2021, 34(11):11-20. |
Zhang Ying, Liu Zilong, Wan Wei. UAV vehicle target detection based on Faster R-CNN[J]. Electronic Science and Technology, 2021, 34(11):11-20. | |
[13] | Lin W H, Zhong J X, Liu S, et al. RoIMix:Proposal-fusion among multiple images for underwater object detection[C]. Barcelona: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, 2020:2588-2592. |
[14] | Landskape D M, Nalamada T, Arasanipalai A U, et al. Rotate to attend: Convolutional triplet attention module[C]. Waikoloa: Proceedings of Conference on IEEE Winter Conference on Applications of Computer Vision, 2021:3139-3148. |
[15] | Wang X L, Girshick R, Gupta A, et al. Non-local neural networks[C]. Salt Lake City: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2018:7794-7803. |
[16] | 魏郭依哲, 陈思遥, 刘玉涛, 等. 水下图像增强和修复算法综述[J]. 计算机应用研究, 2021, 38(9):2561-2569. |
Wei Guoyizhe, Chen Siyao, Liu Yutao, et al. Survey of underwater image enhancement and restoration algorithms[J]. Application Research of Computers, 2021, 38(9):2561-2569. | |
[17] | Ma Y T, Lu T, Wu Y R. Multi-scale relational reasoning with regional attention for visual question answering[C]. Milan: Proceedings of the Twenty-fifth International Conference on Pattern Recognition, 2021:5642-5649. |
[18] | YamashitaT, FurukawaH,Fujiyoshi H. Multiple skip connections of dilated convolution network for semantic segmentation[C]. Athens: Proceedings of the Twenty-fifth IEEE International Conference on Image Processing, 2018:1593-1597. |
[19] |
Ren S Q, He K M, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
doi: 10.1109/TPAMI.2016.2577031 pmid: 27295650 |
[20] | Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]. Las Vegas: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2016:779-788. |
[21] | Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector[C]. Amsterdam: Proceedings of European Conference on Computer Vision, 2016:21-37. |
[22] | He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]. Las Vegas: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2016:770-778. |
[23] | Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. Institute of Electronics, Information and Communication Engineers Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2014, 14(9):1556-1561. |
[1] | LIU Yuwei,CAO Min,FENG Haojia. CNAS Recognition Criteria Automatic Benchmarking System Based on Natural Language Processing [J]. Electronic Science and Technology, 2023, 36(5): 28-33. |
[2] | ZHENG Yuheng,FU Dongxiang. UAV Detection Based on Slim-YOLOv4 with Embedded Device [J]. Electronic Science and Technology, 2023, 36(5): 55-61. |
[3] | LUO Ruipeng,FENG Mingke,HUANG Xin,ZOU Renling,LI Dan. A Review of Research on EEG Signal Preprocessing Methods [J]. Electronic Science and Technology, 2023, 36(4): 36-43. |
[4] | CUI Zhuodong,CHEN Wei,YIN Zhong. Helmet Wearing Detection Based on Enhanced Feature Fusion Network [J]. Electronic Science and Technology, 2023, 36(4): 44-51. |
[5] | BAI Yingqi,PALIDAN·Tuerxun . A Scientific Literature Recommendation Method Based on Multi-Task Learning [J]. Electronic Science and Technology, 2023, 36(4): 59-64. |
[6] | SUN Hong,ZHANG Yuxiang. Super-Resolution Image Reconstruction Algorithm Based on Multi-Feature Gated Feedback Residual Network [J]. Electronic Science and Technology, 2023, 36(4): 65-70. |
[7] | TANG Zheng,ZHANG Huilin,MA Lixin,LIU Jinzhi,WANG Hao. Identification of Foreign Objects on Transmission Lines Using Lightweight Network Algorithm [J]. Electronic Science and Technology, 2023, 36(4): 71-77. |
[8] | SUN Hong,LU Meike. Hybrid Recommendation Algorithm Fused with User Behavior Sequence Prediction [J]. Electronic Science and Technology, 2023, 36(4): 84-89. |
[9] | HUANG Yuan,WEI Yunbing,TONG Dongbing,WANG Weigao. Short-Term Photovoltaic Power Prediction Based on VMD and Improved TCN [J]. Electronic Science and Technology, 2023, 36(3): 42-49. |
[10] | LU Dongxiang. Research Progress of Node Assignment Optimization Strategy in Road Traffic Network [J]. Electronic Science and Technology, 2023, 36(3): 81-86. |
[11] | ZUO Bin,LI Feifei. An Effective Segmentation Method for COVID-19 CT Image Based on Attention Mechanism and Inf-Net [J]. Electronic Science and Technology, 2023, 36(2): 22-28. |
[12] | ZHAO Wenjun,ZHAI Han,ZHANG Hongyan. Total Variation and Sparsity Regularized Deep Nonnegative Matrix Factorization for Hyperspectral Unmixing [J]. Electronic Science and Technology, 2023, 36(2): 53-60. |
[13] | YU Qiongfang,NIU Dongyang. Mixed Prediction of Mine Pressure Time and Space Based on LSTM Network [J]. Electronic Science and Technology, 2023, 36(2): 67-72. |
[14] | ZHAO Jin,LI Feifei. A GAN-Based Lightweight Style Transfer Model for Ink Painting [J]. Electronic Science and Technology, 2023, 36(2): 81-86. |
[15] | WU Tong,YU Lianzhi. The Recommendation Algorithm of Extreme Deep Factorization Machine Merged with Attention Network [J]. Electronic Science and Technology, 2023, 36(1): 38-43. |
|