Electronic Science and Technology ›› 2023, Vol. 36 ›› Issue (2): 22-28.doi: 10.16180/j.cnki.issn1007-7820.2023.02.004
Previous Articles Next Articles
ZUO Bin,LI Feifei
Received:
2021-08-02
Online:
2023-02-15
Published:
2023-01-17
Supported by:
CLC Number:
ZUO Bin,LI Feifei. An Effective Segmentation Method for COVID-19 CT Image Based on Attention Mechanism and Inf-Net[J].Electronic Science and Technology, 2023, 36(2): 22-28.
Table 1.
Comparison of experiments results"
网络 | Dice | 灵敏度 | 特异率 | Sα | MAE | |
---|---|---|---|---|---|---|
U-Net[ | 0.439 | 0.534 | 0.858 | 0.622 | 0.625 | 0.186 |
Attention U-Net[ | 0.583 | 0.637 | 0.921 | 0.744 | 0.739 | 0.112 |
Gated-UNet[ | 0.623 | 0.658 | 0.926 | 0.725 | 0.814 | 0.102 |
Dense-UNet[ | 0.515 | 0.594 | 0.840 | 0.655 | 0.662 | 0.184 |
U-Net++[ | 0.581 | 0.672 | 0.902 | 0.722 | 0.720 | 0.120 |
Inf-Net[ | 0.682 | 0.692 | 0.943 | 0.781 | 0.838 | 0.082 |
mInf-Net (Ours) | 0.690 | 0.740 | 0.923 | 0.771 | 0.842 | 0.092 |
Semi-mInf-Net (Ours) | 0.751 | 0.754 | 0.954 | 0.799 | 0.904 | 0.064 |
[1] |
Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time[J]. The Lancet Infectious Diseases, 2020, 20(5):533-534.
doi: 10.1016/S1473-3099(20)30120-1 |
[2] | 缪冉, 李菲菲, 陈虬. 基于卷积神经网络与多尺度空间编码的场景识别方法[J]. 电子科技, 2020, 33(12):54-58. |
Miao Ran, Li Feifei, Chen Qiu. Scene recognition algorithm based on convolutional neural networks and multi-scale space encoding[J]. Electronic Science and Technology, 2020, 33(12):54-58. | |
[3] | Ma Y, Feng P, He P, et al. Segmenting lung lesions of COVID-19 from CT images via pyramid pooling improved Unet[J]. Biomedical Physics & Engineering Express, 2021, 7(4):1-12. |
[4] | 周子棋, 康莉, 黄建军. 多站点新冠肺炎肺部CT图像的三维深度卷积分割[J]. 信号处理, 2021, 35(5):771-779. |
Zhou Ziqi, Kang Li, Huang Jianjun. 3D CNN segmentation of multi-site lung CT COVID-19 lesion[J]. Journal of Signal Processing, 2021, 35(5):771-779. | |
[5] |
宋瑶, 刘俊. 改进U-Net的新冠肺炎图像分割方法[J]. 计算机工程与应用, 2021, 57(19):243-251.
doi: 10.3778/j.issn.1002-8331.2010-0207 |
Song Yao, Liu Jun. Improved U-Net network for COVID-19 image segmentation[J]. Computer Engineering and Applications, 2021, 57(19):243-251.
doi: 10.3778/j.issn.1002-8331.2010-0207 |
|
[6] |
Fan D P, Zhou T, Ji G P, et al. Inf-Net: Automatic COVID-19 lung infection segmentation from CT images[J]. IEEE Transactions on Medical Imaging, 2020, 39(8):2626-2637.
doi: 10.1109/TMI.2020.2996645 |
[7] | Oktay O, Schlemper J, Folgoc L L, et al. Attention U-Net: Learning where to look for the pancreas[C]. Amsterdam: Proceedings of the Medical Imaging with Deep Learning, 2018. |
[8] | Zhao J X, Liu J J, Fan D P, et al. EGNet: Edge guidance network for salient object detection[C]. Seoul: IEEE International Conference on Computer Vision, 2019. |
[9] | Wu Z, Su L, Huang Q. Stacked cross refinement network for edge-aware salient object detection[C]. Seoul: IEEE International Conference on Computer Vision, 2019. |
[10] | Zhang Z, Fu H, Dai H, et al. ET-Net: A generic edge-attention guidance network for medical image segmentation[C]. Shenzhen: International Conference on Medical Image Computing and Computer Assisted Intervention, 2019. |
[11] |
Fu H, Cheng J, Xu Y, et al. Joint optic disc and cup segmentation based on multi-label deep network and polar transformation[J]. IEEE Transactions on Medical Imaging, 2018, 37(7):1597-1605.
doi: 10.1109/TMI.2018.2791488 pmid: 29969410 |
[12] |
Gu Z, Cheng J, Fu H, et al. CE-Net: Context encoder network for 2D medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2019, 38(10):2281-2292.
doi: 10.1109/TMI.2019.2903562 pmid: 30843824 |
[13] | Zhang S, Fu H, Yan Y, et al. Attention guided network for retinal image segmentation[C]. Shenzhen: International Conference on Medical Image Computing and Computer Assisted Intervention, 2019. |
[14] | Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation[C]. Munich: International Conference on Medical Image Computing and Computer Assisted Intervention, 2015. |
[15] |
Zhou Z, Siddiquee M M R, Tajbakhsh N, et al. UNet++: A nested U-Net architecture for medical image segmentation[J]. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, 2018, 11045:3-11.
doi: 10.1007/978-3-030-00889-5_1 pmid: 32613207 |
[16] |
Gao S H, Cheng M M, Zhao K, et al. Res2Net: A new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2):652-662.
doi: 10.1109/TPAMI.2019.2938758 |
[17] | Wu Z, Su L, Huang Q. Cascaded partial decoder for fast and accurate salient object detection[C]. Long Beach: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019. |
[18] | Fu J, Liu J, Tian H, et al. Dual attention network for scene segmentation[C]. Long Beach: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019. |
[19] | Wei Y, Feng J, Liang X, et al. Object region mining with adversarial erasing: A simple classifcation to semantic segmentation approach[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. |
[20] |
Chen S, Tan X, Wang B, et al. Reverse attention-based residual network for salient object detection[J]. IEEE Transactions on Image Processing, 2020, 29(2):3763-3776.
doi: 10.1109/TIP.2020.2965989 |
[21] | Fan D P, Cheng M M, Liu Y, et al. Structure-measure: A new way to evaluate foreground maps[C]. Venice: Proceedings of the IEEE International Conference on Computer Vision, 2017. |
[22] | Fan D P, Gong C, Cao Y, et al. Enhanced-alignment measure for binary foreground map evaluation[C]. Stockholm: International Joint Conferences on Artificial Intelligence, 2018. |
[23] |
Schlemper J, Oktay O, Schaap M, et al. Attention gated networks: Learning to leverage salient regions in medical images[J]. Medical Image Analysis, 2019, 53(6):197-207.
doi: 10.1016/j.media.2019.01.012 |
[24] |
Li X, Chen H, Qi X, et al. H-DenseUNet: Hybrid densely connected UNet for liver and tumor segmentation from CT volumes[J]. IEEE Transactions on Medical Imaging, 2018, 37(12):2663-2674.
doi: 10.1109/TMI.2018.2845918 pmid: 29994201 |
[1] | YU Qiongfang,NIU Dongyang. Mixed Prediction of Mine Pressure Time and Space Based on LSTM Network [J]. Electronic Science and Technology, 2023, 36(2): 67-72. |
[2] | ZHAO Wenjun,ZHAI Han,ZHANG Hongyan. Total Variation and Sparsity Regularized Deep Nonnegative Matrix Factorization for Hyperspectral Unmixing [J]. Electronic Science and Technology, 2023, 36(2): 53-60. |
[3] | ZHAO Jin,LI Feifei. A GAN-Based Lightweight Style Transfer Model for Ink Painting [J]. Electronic Science and Technology, 2023, 36(2): 81-86. |
[4] | HUANG Yajing,LIAO Aihua,YU Miao,LI Xiaolong,HU Dingyu. An Improved CNN Method for Bearing Acoustic Fault Diagnosis [J]. Electronic Science and Technology, 2023, 36(1): 75-80. |
[5] | WU Tong,YU Lianzhi. The Recommendation Algorithm of Extreme Deep Factorization Machine Merged with Attention Network [J]. Electronic Science and Technology, 2023, 36(1): 38-43. |
[6] | BI Jiazhen,SHEN Tuo,ZHANG Xuanxiong. A Research on Distance Measurement Between Trains in Rail Transit Based on Machine Vision [J]. Electronic Science and Technology, 2022, 35(9): 37-43. |
[7] | DENG Yuan,SHI Yiping,JIANG Yueying,ZHU Yamei,LIU Jin. Infant Expression Recognition Algorithm Based on MobileNetV2 and LBP Feature Fusion [J]. Electronic Science and Technology, 2022, 35(8): 47-52. |
[8] | ZHANG Qiaomu,ZHONG Qianwen,SUN Ming,LUO Wencheng,CHAI Xiaodong. Research on Dynamic Monitoring Method of Pantograph-Net Contact Position in Complex Environment [J]. Electronic Science and Technology, 2022, 35(8): 66-72. |
[9] | ZHAO Xuan,ZHOU Fan,YU Hancheng. Improved YOLOv3 Model Based on New Feature Extraction and Fusion Module [J]. Electronic Science and Technology, 2022, 35(7): 40-45. |
[10] | CHEN Jinhong,CHEN Wei,YIN Zhong. Semantic Segmentation of Streetscape Based on Improved ExfuseNet [J]. Electronic Science and Technology, 2022, 35(6): 28-34. |
[11] | SHEN Ningjing,YUAN Jian. Crowd Counting Algorithm Based on Residual Dense Connection and Attention Fusion [J]. Electronic Science and Technology, 2022, 35(6): 6-12. |
[12] | Hongjun SAN,Wanglin WANG,Jiupeng CHEN,Feiya XIE,Yangyang XU,Jia CHEN. VSLAM for Indoor Dynamic Scenes [J]. Electronic Science and Technology, 2022, 35(4): 14-19. |
[13] | Chaowei LIN,Feifei LI,Qiu CHEN. Globaland Local Scene Representation Method Based on Deep Convolutional Features [J]. Electronic Science and Technology, 2022, 35(4): 20-27. |
[14] | Lingyu JI,Yongbin GAO,Chenglu ZHAO,Xianhua TANG,Kaicheng XU,Jiacheng XU. CTA Segmentation Algorithm of Abdominal Artery Based on 3D Fully Convolutional Network [J]. Electronic Science and Technology, 2022, 35(3): 38-44. |
[15] | Peng CHEN,Zilong LIU. Arrhythmia Recognition Based on GAN-CNN [J]. Electronic Science and Technology, 2022, 35(3): 45-50. |
|