[1] |
Sheng J, Li Y. Classification of traditional Chinese paintings using a modified embedding algorithm[J]. Journal of Electronic Imaging, 2019, 28(2):1-12.
|
[2] |
Sheng J, Li Y. Style-based classification of Chinese ink and wash paintings[J]. Optical Engineering, 2013, 52(9): 1-9.
|
[3] |
LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553):436-444.
doi: 10.1038/nature14539
|
[4] |
Gatys L A, Ecker A S, Bethge M. Image style transfer using convolutional neural networks[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
|
[5] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]. San Diego: International Conference on Learning Representations, 2015.
|
[6] |
Huang X, Belongie S. Arbitrary style transfer in real-time with adaptive instance normalization[C]. Venice: Proceedings of the IEEE International Conference on Computer Vision, 2017.
|
[7] |
Goodfellow I, Pouget Abadie J, Mirza M, et al. Generative adversarial nets[C]. Montreal: Annual Conference on Neural Information Processing Systems, 2014.
|
[8] |
Isola P, Zhu J Y, Zhou T H, et al. Image-to-image translation with conditional adversarial networks[C]. Hawaii: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
[9] |
Zhu J Y, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]. Venice: Proceedings of the IEEE Conference on International Conference on Computer Vision, 2017.
|
[10] |
He B, Gao F, Ma D, et al. ChipGAN: A generative adversarial network for chinese ink wash painting style transfer[C]. Seoul: Proceedings of the Twenty-sixth ACM International Conference on Multimedia, 2018.
|
[11] |
Lee H Y, Tseng H Y, Huang J B, et al. Diverse image-to-image translation via disentangled representations[C]. Munich: Proceedings of the European Conference on Computer Vision, 2018.
|
[12] |
Wang X, Yu K, Wu S, et al. ESRGAN: Enhanced super-resolution generative adversarial networks[C]. Munich: Proceedings of the European Conference on Computer Vision, 2018.
|
[13] |
向晴, 袁健华. 基于多层次判别器的图像翻译模型[J]. 软件, 2020, 41(3):11-17.
|
|
Xiang Qing, Yuan Jianhua. Image-to-image translation based on multi-layer discriminator[J]. Software, 2020, 41(3):11-17.
|
[14] |
佟博, 刘韬, 刘畅. 基于生成对抗网络的轴承失效信号生成研究[J]. 电子科技, 2020, 33(4):28-34.
|
|
Tong Bo, Liu Tao, Liu Chang. Research on bearing failure signal generation based on generative adversarial networks[J]. Electronic Science and Technology, 2020, 33(4):28-34.
|
[15] |
Wang X, Girshick R, Gupta A, et al. Non-local neural networks[C]. Salt Lake City: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.
|
[16] |
Mao X D, Li Q, Xie H R, et al. Least squares generative adversarial networks[C]. Venice: Proceedings of the IEEE International Conference on Computer Vision, 2017.
|
[17] |
Johnson J, Alahi A, Li F F. Perceptual losses for real time style transfer and super-resolution[C]. Amsterdam: European Conference on Computer Vision, 2016.
|
[18] |
Heusel M, Ramsauer H, Unterthiner T, et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium[C]. Long Beach: Annual Conference on Neural Information Processing Systems, 2017.
|
[19] |
Bińkowski M, Sutherland D J, Arbel M, et al. Demystifying MMD GANs[C]. Vancouver: International Conference on Learning Representations, 2018.
|