[1] |
危才华, 景越峰, 张小琳, 等. 基于极大似然模型和期望最大化算法的闪光图像重建[J]. 强激光与离子束, 2016, 28(5):101-105.
|
|
Wei Caihua, Jing Yuefeng, Zhang Xiaolin, et al. Image reconstruction algorithm based on maximum likelihood-expectation maximum for radiography[J]. High Power Laser and Particle Beams, 2016, 28(5):101-105.
|
[2] |
王忠淼. 基于MCMC方法的闪光图像重建算法研究[D]. 绵阳: 中国工程物理研究院, 2019.
|
|
Wang Zhongmiao. Research of reconstruction algorithm in flash radiography based on MCMC method[D]. Mianyang: China Academy of Engineering Physics, 2019.
|
[3] |
Lu C, Chen W, Xu H. Binary sequence family for chaotic compressed sensing[J]. KSII Transactions on Internet and Information Systems, 2019, 13(9):4645-4664.
doi: 10.3837/tiis.2019.09.018
|
[4] |
Lu C, Chen W, Xu H. Deterministic bipolar compressed sensing matrices from binary sequence family[J]. KSII Transactions on Internet and Information Systems, 2020, 14(6):2497-2517.
|
[5] |
Gan H, Xiao S, Zhang T, et al. Bipolar measurement matrix using chaotic sequence[J]. Communications in Nonlinear Science and Numerical Simulation, 2019, 72(6):139-151.
doi: 10.1016/j.cnsns.2018.12.012
|
[6] |
Gan H, Xiao S, Zhang Z, et al. Chaotic compressive sampling matrix: Where sensing architecture meets sinusoidal iterator[J]. Circuits, Systems, and Signal Processing, 2020, 39(3):1581-1602.
doi: 10.1007/s00034-019-01223-w
|
[7] |
Bai H, Li X. Measurement-driven framework with simultaneous sensing matrix and dictionary optimization for compressed sensing[J]. IEEE Access, 2020(8):35950-35963.
|
[8] |
汪凤玲, 吴贇, 支佳. 毫米波MIMO系统中稀疏度自适应的压缩感知信道估计[J]. 电子科技, 2019, 32(10):13-16.
|
|
Wang Fengling, Wu Yun, Zhi Jia. Sparse adaptive compressed sensing channel estimation in millimeter wave MIMO systems[J]. Electronic Science and Technology, 2019, 32(10):13-16.
|
[9] |
郭龙, 姚树新, 郑法威. 流场压缩感知渗透率计算[J]. 电子科技, 2021, 34(5):1-6.
|
|
Guo Long, Yao Shuxin, Zheng Fawei. Application of compressive sensing of CFD in permeability calculation[J]. Electronic Science and Technology, 2021, 34(5): 1-6.
|
[10] |
胡渊. 单幅图像密度重建中的不对称问题研究[D]. 绵阳: 中国工程物理研究院, 2011.
|
|
Hu Yuan. Research of density reconstruction for asymmetric object from single radiograph[D]. Mianyang: China Academy of Engineering Physics, 2011.
|
[11] |
景越峰, 管永红, 张小琳. 基于约束优化的闪光照相图像重建算法[J]. 强激光与粒子束, 2016, 28(9):115-120.
|
|
Jing Yuefeng, Guan Yonghong, Zhang Xiaolin. Constrained optimization reconstruction for flash radiographic image[J]. High Power Laser and Particle Beams, 2016, 28(9):115-120.
|
[12] |
Wang Z, Jing Y, Kang X, et al. X-ray radiographs reconstruction based on nonlinear least squares with deconvolution[J]. Nuclear Instruments and Methods in Physics Research, Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 92(9):134-141.
|
[13] |
Shi R, Zheng H, Tuo X, et al. Image reconstruction based on total variation minimization for radioactive wastes tomographic gamma scanning from sparse projections[J]. IEEE Access, 2021(9):87453-87461.
|
[14] |
Wang Y, Chen G, Xi T, et al. Helical CT reconstruction from sparse-vew data through exploiting the 3D anatomical structure sparsity[J]. IEEE Access, 2021(9):15200-15211.
|
[15] |
Liu W, Qi S, Shi Y, et al. Optimization based on Monte Carlo simulation of a pixelated scintillator array for megavolt X-ray flash radiography[J]. Instrumentation Science & Technology, 2020, 49(3):304-312.
|
[16] |
Siddon R L. Fast calculation of the exact radiological path for a three-dimensional CT array[J]. Medical Physics, 1985, 12(2):252‐255.
doi: 10.1118/1.595715
pmid: 4000088
|
[17] |
Bao P, Zhou J, Zhang Y. Few-view CT reconstruction with group-sparsity regularization[J]. Communications in Numerical Methods in Engineering, 2018, 34(9):1-16.
|
[18] |
Moe Y M. The mathematics of computerised tomography: An introduction to image reconstruction[D]. Manchester: The University of Manchester, 2016.
|
[19] |
Zhang J, Zhao D, Gao W. Group-based sparse representation for image restoration[J]. IEEE Transactions on Image Processing, 2014, 23(8):3336-3351.
doi: 10.1109/TIP.2014.2323127
pmid: 24835225
|