Electronic Science and Technology ›› 2023, Vol. 36 ›› Issue (2): 53-60.doi: 10.16180/j.cnki.issn1007-7820.2023.02.008
Previous Articles Next Articles
ZHAO Wenjun1,ZHAI Han2,ZHANG Hongyan1
Received:
2021-08-18
Online:
2023-02-15
Published:
2023-01-17
Supported by:
CLC Number:
ZHAO Wenjun,ZHAI Han,ZHANG Hongyan. Total Variation and Sparsity Regularized Deep Nonnegative Matrix Factorization for Hyperspectral Unmixing[J].Electronic Science and Technology, 2023, 36(2): 53-60.
[1] | Zhai H, Zhang H Y, Zhang L P, et al. Sparsity-based clustering for large hyperspectral remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020(11):1-15. |
[2] | 童庆禧, 张兵, 郑兰芬. 高光谱遥感:原理、技术与应用[M]. 北京: 高等教育出版社, 2006. |
Tong Qingxi, Zhang Bing, Zheng Lanfen. Hyperspectral remote sensing[M]. Beijing: Higher Education Press, 2006. | |
[3] |
Keshava N, Mustard J F. Spectral unmixing[J]. IEEE Signal Processing Magazine, 2002, 19(1):44-57.
doi: 10.1109/79.974727 |
[4] |
Zhai H, Zhang H, Zhang L, et al. Laplacian-regularized low-rank subspace clustering for hyperspectral image band selection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57(3):1723-1740.
doi: 10.1109/TGRS.2018.2868796 |
[5] | Zhai H, Zhang H, Pingxiang L I, et al. Hyperspectral image clustering: Current achievements and future lines[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 17(7)1243-1247. |
[6] | 刘璐, 张洪艳, 张良培. 基于光谱加权低秩矩阵分解的高光谱影像去噪方法[J]. 电子科技, 2020, 33(5):21-27. |
Liu Lu, Zhang Hongyan, Zhang Liangpei. Hyperspectral image denoising via spectral weighted low-rank matrix approximation[J]. Electronic Science and Technology, 2020, 33(5):21-27. | |
[7] | 魏一苇, 黄世奇. 高光谱混合像元分解技术研究综述[C]. 武汉: 第九届国家安全地球物理专题研讨会, 2013. |
Wei Yiwei, Huang Shiqi. Overview of the technique for hyperspectral unmixing[C]. Wuhan: The Ninth National Security Geophysics Symposium, 2013. | |
[8] |
Jia S, Qian Y. Constrained nonnegative matrix factorization for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 47(1):161-173.
doi: 10.1109/TGRS.2008.2002882 |
[9] |
Lu X, Wu H, Yuan Y, et al. Manifold regularized sparse NMF for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 51(5):2815-2826.
doi: 10.1109/TGRS.2012.2213825 |
[10] |
Feng X R, Li H C, Li J, et al. Hyperspectral unmixing using sparsity-constrained deep nonnegative matrix factorization with total variation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10):6245-6257.
doi: 10.1109/TGRS.2018.2834567 |
[11] | Tong L, Zhou J, Qian B, et al. Adaptive graph regularized multilayer nonnegative matrix factorization for hyperspectral unmixing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020(13):434-447. |
[12] |
Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755):788-791.
doi: 10.1038/44565 |
[13] |
Qian Y, Jia S, Zhou J, et al. Hyperspectral unmixing via L1/2 sparsity-constrained nonnegative matrix factorization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11):4282-4297.
doi: 10.1109/TGRS.2011.2144605 |
[14] |
He W, Zhang H, Zhang L. Total variation regularized reweighted sparse nonnegative matrix factorization for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7):3909-3921.
doi: 10.1109/TGRS.2017.2683719 |
[15] |
Zhai H, Zhang H, Zhang L, et al. Total variation regularized collaborative representation clustering with a locally adaptive dictionary for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57(1):166-180.
doi: 10.1109/TGRS.2018.2852708 |
[16] |
Zhai H, Zhang H, Zhang L, et al. Nonlocal means regularized sketched reweighted sparse and low-rank subspace clustering for large hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(5):4164-4178.
doi: 10.1109/TGRS.2020.3023418 |
[17] |
Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 1992, 60(1-4):259-268.
doi: 10.1016/0167-2789(92)90242-F |
[18] |
Nascimento J M P, Dias J M B. Vertex component analysis: A fast algorithm to unmix hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4):898-910.
doi: 10.1109/TGRS.2005.844293 |
[19] |
Cichocki A, Zdunek R. Multilayer nonnegative matrix factorisation[J]. Electronics Letters, 2006, 42(16):947.
doi: 10.1049/el:20060983 |
[20] | Boardman J W, Kruse F A, Green R O. Mapping target signatures via partial unmixing of AVIRIS data[J]. California Institute of Technology, 1995(3):1-4. |
[21] |
Zhu F, Wang Y, Fan B, et al. Spectral unmixing via data-guided sparsity[J]. IEEE Transactions on Image Processing, 2014, 23(12):5412-5427.
pmid: 25330488 |
[1] | YU Qiongfang,NIU Dongyang. Mixed Prediction of Mine Pressure Time and Space Based on LSTM Network [J]. Electronic Science and Technology, 2023, 36(2): 67-72. |
[2] | ZUO Bin,LI Feifei. An Effective Segmentation Method for COVID-19 CT Image Based on Attention Mechanism and Inf-Net [J]. Electronic Science and Technology, 2023, 36(2): 22-28. |
[3] | WU Tong,YU Lianzhi. The Recommendation Algorithm of Extreme Deep Factorization Machine Merged with Attention Network [J]. Electronic Science and Technology, 2023, 36(1): 38-43. |
[4] | BI Jiazhen,SHEN Tuo,ZHANG Xuanxiong. A Research on Distance Measurement Between Trains in Rail Transit Based on Machine Vision [J]. Electronic Science and Technology, 2022, 35(9): 37-43. |
[5] | ZHANG Qiaomu,ZHONG Qianwen,SUN Ming,LUO Wencheng,CHAI Xiaodong. Research on Dynamic Monitoring Method of Pantograph-Net Contact Position in Complex Environment [J]. Electronic Science and Technology, 2022, 35(8): 66-72. |
[6] | ZHAO Xuan,ZHOU Fan,YU Hancheng. Improved YOLOv3 Model Based on New Feature Extraction and Fusion Module [J]. Electronic Science and Technology, 2022, 35(7): 40-45. |
[7] | Peng CHEN,Zilong LIU. Arrhythmia Recognition Based on GAN-CNN [J]. Electronic Science and Technology, 2022, 35(3): 45-50. |
[8] | DENG Lei,SUN Peiyang. Research on Network Public Opinion Monitoring System Based on Deep Learning [J]. Electronic Science and Technology, 2022, 35(12): 97-102. |
[9] | YU Runrun,JIANG Xiaoyan,ZHU Kaiying,JIANG Guanghao. Real-Time Image Semantic Segmentation Based on Contextual Attention Mechanism [J]. Electronic Science and Technology, 2022, 35(12): 57-63. |
[10] | ZHANG Ye,BAO Liang. Research Progress of Service Composition Based on Machine Learning [J]. Electronic Science and Technology, 2022, 35(11): 58-63. |
[11] | ZHANG Wei,LIU Na,JIANG Yang,LI Qingdu. Garbage Detection and Classification Based on YOLO Neural Network [J]. Electronic Science and Technology, 2022, 35(10): 45-50. |
[12] | CHENG Xiaoya,ZHANG Lei. Research on Occluded Face Recognition Method Based on Deep Learning [J]. Electronic Science and Technology, 2022, 35(1): 35-39. |
[13] | ZHAO Chong,CHI Mengmeng,CHU Cong,ZHANG Peng. Research on Motion Simulation and Visual Recognition Algorithm of Guide Dog Walking Mechanism [J]. Electronic Science and Technology, 2021, 34(9): 66-72. |
[14] | MA Lixin,DOU Chenfei,SONG Chencan,YANG Tianxiao. Insulator Nondestructive Testing Based on Feature Fusion CNN [J]. Electronic Science and Technology, 2021, 34(7): 26-30. |
[15] | XUE Yongjie,JU Zhiyong. Fish Recognition Algorithm Based on Improved AlexNet [J]. Electronic Science and Technology, 2021, 34(4): 12-17. |
|