Electronic Science and Technology ›› 2023, Vol. 36 ›› Issue (2): 73-80.doi: 10.16180/j.cnki.issn1007-7820.2023.02.011
Previous Articles Next Articles
CHENG Changwen,CHEN Wei,CHEN Jinhong,YIN Zhong
Received:
2021-08-29
Online:
2023-02-15
Published:
2023-01-17
Supported by:
CLC Number:
CHENG Changwen,CHEN Wei,CHEN Jinhong,YIN Zhong. YOLO-Improve Detection Method of Real-Time Mask Wearing[J].Electronic Science and Technology, 2023, 36(2): 73-80.
Table 1.
Parameters adjusted bydata augmentation"
参数名 | 参数值 | 参数解释 |
---|---|---|
hsv_h | 0.015 | 图像 HSV-Hue 增强(小数) |
hsv_s | 0.7 | 图像HSV-饱和度增强(小数) |
hsv_v | 0.6 | 图像HSV-值增强(小数) |
degrees | 1.0 | 图像旋转(+/- deg) |
translate | 0.1 | 图像翻译(+/- fraction) |
scale | 0.6 | 图像比例(+/- gain) |
shear | 1.0 | 图像剪切(+/- deg) |
perspective | 0.0 | 图像透视(+/- fraction), range 0-0.001 |
flipud | 0.01 | 图像上下翻转(比例) |
fliplr | 0.5 | 图像左右翻转(比例) |
mixup | 0.2 | 图像混合(比例) |
[1] | Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Columbus: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014. |
[2] | Ren S, He K, Girshick R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[J]. Advances in Neural Information Processing Systems, 2015, 28(4):91-99. |
[3] | Tan M, Pang R, Le Q V. Efficientdet: Scalable and efficient object detection[C]. Seattle: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020. |
[4] | Tan M, Le Q. Efficientnet: Rethinking model scaling for convolutional neural networks[C]. Shanghai: International Conference on MachineLearning, 2019. |
[5] | Deng J, Guo J, Ververas E, et al. Retinaface: Single-shot multi-level face localisation in the wild[C]. Seattle: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020. |
[6] | 陈磊, 张孙杰, 王永雄. 基于改进的YOLOv3及其在遥感图像中的检测[J]. 小型微型计算机系统, 2020, 41(11):2321-2324. |
Chen Lei, Zhang Sunjie, Wang Yongxiong. Based on improved YOLOv3 and its detection in remote sensing images[J]. Journal of Chinese Computer Systems, 2020, 41(11):2321-2324. | |
[7] | Redmon J, Divvala S, Girshick R, et al. You only look once: Unified,real-time object detection[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. |
[8] | Wang C Y, Bochkovskiy A, Liao H Y M. Scaled-YOLOv4: Scaling cross stage partial network[C]. Seattle: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021. |
[9] | Redmon J, Farhadi A. YOLOv3: An incremental improvement[C]. Salt Lake City: Proceedings of the Conference on Computer Vision and Pattern Recognition, 2018. |
[10] | Maas A L, Hannun A Y, Ng A Y. Rectifier nonlinearities improve neural network acoustic models[C]. Atlanta: Proceedings of the International Conference on Machine Learning, 2013. |
[11] | Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. Paris: International Conference on Machine Learning, 2015. |
[12] | He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. |
[13] | Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. |
[14] | Wang C Y, Liao H Y M, Wu Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN[C]. Seattle: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020. |
[15] | Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional Nnetworks[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. |
[16] | Wang C Y, Liao H Y M, Wu Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN[C]. Seattle: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020. |
[17] |
He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916.
doi: 10.1109/TPAMI.2015.2389824 pmid: 26353135 |
[18] | Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. |
[19] | Wang W, Xie E, Song X, et al. Efficient and accurate arbitrary-shaped text detection with pixel aggregation network[C]. Seoul: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019. |
[20] | Yun S, Han D, Oh S J, et al. Cutmix: Regularization strategy to train strong classifiers with localizable features[C]. Seoul: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019. |
[21] | Ge S, Li J, Ye Q, et al. Detecting masked faces in the wild with lle-cnns[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. |
[22] | 张春蕾, 牛馨苑. 结合YOLO的ORB双目图像匹配方法研究[J]. 小型微型计算机系统, 2020, 41(1):185-189. |
Zhang Chunlei, Niu Xinyuan. Research on ORB binocular image matching method based on YOLO[J]. Journal of Chinese Computer Systems, 2020, 41(1):185-189. | |
[23] |
牛作东, 覃涛, 李捍东, 等. 改进RetinaFace的自然场景口罩佩戴检测算法[J]. 计算机工程与应用, 2020, 56(12):1-7.
doi: 10.3778/j.issn.1002-8331.2002-0402 |
Niu Zuodong, Qin Tao, Li Handong, et al. Improved algorithm of retinaFace for Natural scene mask wear detection[J]. Computer Engineering and Applications, 2020, 56(12):1-7.
doi: 10.3778/j.issn.1002-8331.2002-0402 |
|
[24] | 张修宝, 林子原, 田万鑫, 等. 全天候自然场景下的人脸佩戴口罩识别技术[J]. 中国科学:信息科学, 2020, 50(7):1110-1120. |
Zhang Xiubao, Lin Ziyuan, Tian Wanxin, et al. Mask-wearing recognition in the wild[J]. Science in China: Information Sciences, 2020, 50(7):1110-1120. | |
[25] | 邓黄潇. 基于迁移学习与RetinaNet的口罩佩戴检测的方法[J]. 电子技术与软件工程, 2020(5):209-211. |
Deng Huangxiao. Method of mask wearing detection based on transfer learning and RetinaNet[J]. Electronic Technology and Software Engineering, 2020(5):209-211. | |
[26] | 赵崇, 迟蒙蒙, 储聪, 等. 导盲犬行走机构运动仿真及其视觉识别算法研究[J]. 电子科技, 2021, 34(9):66-72. |
Zhao Chong, Chi Mengmeng, Chu Cong, et al. Research on motion simulation and visual recognition algorithm of guide dog walking mechanism[J]. Electronic Science and Technology, 2021, 34(9):66-72. |
[1] | ZHANG Manjie,YANG Fangyan,JI Yunfeng. Research Progress of Body Posture Estimation in Ball Games [J]. Electronic Science and Technology, 2023, 36(1): 28-37. |
[2] | ZHOU Yongchang,HUANG Yayu. Establishment of a Predictive Model of the Process Parameters of Secondary Moisturizing Based on BP Neural Network [J]. Electronic Science and Technology, 2022, 35(9): 79-86. |
[3] | ZHANG Qiaomu,ZHONG Qianwen,SUN Ming,LUO Wencheng,CHAI Xiaodong. Research on Dynamic Monitoring Method of Pantograph-Net Contact Position in Complex Environment [J]. Electronic Science and Technology, 2022, 35(8): 66-72. |
[4] | SUN Kang,XUAN Xuyang,LIU Penghui,ZHAO Laijun,LONG Jie. Partial Discharge Pattern Recognition of Cable Based on CNN-DCGAN under Small Data [J]. Electronic Science and Technology, 2022, 35(7): 7-13. |
[5] | ZHAO Doudou,ZHANG Wei. Soft-Sensing of Effluent BOD Based on VW-IGRBF Neural Network [J]. Electronic Science and Technology, 2022, 35(5): 26-32. |
[6] | CHU Ping,NI Wei. Design of FPGA-Based SqueezeNet Inference Accelerator [J]. Electronic Science and Technology, 2022, 35(2): 20-26. |
[7] | ZHAO Chong,CHI Mengmeng,CHU Cong,ZHANG Peng. Research on Motion Simulation and Visual Recognition Algorithm of Guide Dog Walking Mechanism [J]. Electronic Science and Technology, 2021, 34(9): 66-72. |
[8] | LIU Yaze,ZHANG Shuai,GUO Liang,CHEN Xintong,WU Jiankang. Simulation Analysis of Induced Current Density of Transcranial Magnetic-Acoustical Electrical Stimulation Based on Realistic Human Head Model [J]. Electronic Science and Technology, 2021, 34(6): 17-22. |
[9] | ZHU Bin,LIU Zilong. Image Classification Method Using Convolutional Neural Network Based on New Initial Module [J]. Electronic Science and Technology, 2021, 34(2): 52-56. |
[10] | YE Fei, LIU Zilong. Pedestrian Detection Based on Improved YOLOv3 Algorithm [J]. Electronic Science and Technology, 2021, 34(1): 5-9. |
[11] | WANG Chunjiang,LI Peng. Design of Moving Target Detection System Based on ZYNQ [J]. Electronic Science and Technology, 2020, 33(5): 82-86. |
[12] | GUAN Hongyun,SU Zhentao,WANG Chen. Improved Background Subtraction Based on Feature Fusion [J]. Electronic Science and Technology, 2020, 33(12): 22-27. |
[13] | SHAO Yu'e,WANG Jianlai,ZHOU Shenghua,LIU Hongwei,ZHANG Yuehong. Radar Pulse Compression Method Based on LASSO [J]. Electronic Science and Technology, 2020, 33(11): 7-10. |
[14] | ZHANG Aili,MENG Ziqiang. Imaging Method for Bistatic Forward-Looking High-speed Maneuvering-platform SAR Based on Series Reversion [J]. Electronic Science and Technology, 2019, 32(9): 65-71. |
[15] | NA Yan,DENG Kunming. Fusion of Multi-focus Images Based on a Combination of the Weighting Fractal Features and Average Gradient [J]. , 2015, 28(6): 68-. |
|