Electronic Science and Technology ›› 2023, Vol. 36 ›› Issue (4): 36-43.doi: 10.16180/j.cnki.issn1007-7820.2023.04.005
Previous Articles Next Articles
LUO Ruipeng,FENG Mingke,HUANG Xin,ZOU Renling,LI Dan
Received:
2021-10-11
Online:
2023-04-15
Published:
2023-04-21
Supported by:
CLC Number:
LUO Ruipeng,FENG Mingke,HUANG Xin,ZOU Renling,LI Dan. A Review of Research on EEG Signal Preprocessing Methods[J].Electronic Science and Technology, 2023, 36(4): 36-43.
Table 1.
Types and causes of physiological artifacts"
伪迹类型 | 产生原因及特点 |
---|---|
眼动或眨眼 | 主要由眼动/眨眼所产生,振幅较大,在大脑头皮前部比较明显。 |
肌肉活动 | 由头部、肢体、下巴或者舌头等运动产生干扰的信号,其频率通常大于30 Hz,与脑电快波活动相比较,肌肉活动频率更快,波幅更高。 |
心电 | 由心脏跳动产生的干扰信号,影响较小。心电伪迹的间隙大多是相等的,但在心律不齐的患者中,这种间隙是不等的。 |
血管波 | 在头皮动脉附近的电极产生。如果能同时记录到心电伪迹,则心电伪迹以不变的周期位于血管波伪迹之前。 |
出汗 | 有缓慢的漂移,持续时间达数秒为出汗所致的伪迹。这种伪迹在额部最常见,并可影响到临近的几个电极导联。 |
舌咽部运动 | 如讲话、咀嚼、吮吸、吞咽、咳嗽、打呃能引起舌运动的伪迹。 |
Table 2.
Current technology for removing EEG artifacts and existing problems"
当前伪迹去除技术 | 存在的问题与缺陷 |
---|---|
低通、高通、带通等数字滤波方法 | 伪迹信号通常与脑电信号频谱重叠,只能滤除不在同一频带的噪声。 |
线性回归、自适应滤波、贝叶斯滤波方法 | 需要额外的参考通道且采集脑电实验前需进行适当的校准。 |
独立成分分析(ICA)等盲源分离方法 | 需人为观察并判别伪迹成分以去除,十分耗时耗力且结果不一定准确;算法效果比较依赖数据量的大小。 |
小波包分解等基于小波变换方法 | 分离效果依赖于小波基函数的选择及其与源信号的相似性。 |
经验模态分解及其不同变体形式 | 分解过程存在模态混叠等现象;末端效应会影响分解效果;对噪声的鲁棒性较差;目前局限于单通道脑电信号的使用上。 |
随机森林、聚类等机器学习方法与改进的深度学习方法 | 在多个伪迹成分同时存在的情况下,算法模型的稳定性和可靠性有待提高;依赖大量脑电数据训练模型。 |
[1] | 王韬, 柯余峰, 王宁慈, 等. 空间滤波方法在脑-机接口中的应用及研究进展[J]. 中国生物医学工程学报, 2019, 38(5):599-608. |
Wang Tao, Ke Yufeng, Wang Ningci, et al. Application and research development of spatial filtering method in braincomputer interfaces[J]. Chinese Journal of Biomedical Engineering, 2019, 38(5):599-608. | |
[2] | Hartmann M M, Schindler K, Gebbink T A, et al. PureE-EG:Automatic EEG artifact removal for epilepsy monitoring[J]. Neurophysiologie Clinique/Clinical Neurophysiology, 2014, 44(5):479-490. |
[3] | 郑展鹏, 尹钟. 基于集成SDAE和EEG的跨被试认知工作负荷识别[J]. 电子科技, 2021, 34(3):48-52. |
Zheng Zhanpeng, Yin Zhong. Inter-subject recognition of cognitive workload based on ensemble SDAE and EEG[J]. Electronic Science and Technology, 2021, 34(3):48-52. | |
[4] |
Jiang X, Bian G B, Tian Z A. Removal of artifacts from EEG signals:A review[J]. Sensors, 2019, 19(5):987-1004.
doi: 10.3390/s19050987 |
[5] | Croft R J, Barry R J. Removal of ocular artifact from the EEG:A review[J]. Neurophysiologie Clinique/Clinical Neurophysiology, 2000, 30(1):5-19. |
[6] |
Gratton G. Dealing with artifacts:The EOG contamination of the event-related brain potential[J]. Behavior Research Methods,Instruments & Computers, 1998, 30(1):44-53.
doi: 10.3758/BF03209415 |
[7] |
Chen X, Liu A, Chiang J, et al. Removing muscle artifacts from EEG data:Multichannel or single-channel techniques?[J]. IEEE Sensors Journal, 2016, 16(7):1986-1997.
doi: 10.1109/JSEN.2015.2506982 |
[8] |
Singh A, Hussain A A, Lal S, et al. A comprehensive re-view on critical issues and possible solutions of motor imagery based electroencephalography brain-computer interface[J]. Sensors, 2021, 21(6):2173-2207.
doi: 10.3390/s21062173 |
[9] |
Widmann A, Schröger E, Maess B. Digital filter design for electrophysiological data-a practical approach[J]. Journal of Neuroscience Methods, 2015, 250(7):34-46.
doi: 10.1016/j.jneumeth.2014.08.002 |
[10] |
Motamedi-Fakhr S, Moshrefi-Torbati M, Hill M, et al. Si-gnal processing techniques applied to human sleep EEG signals:A review[J]. Biomedical Signal Processing and Control, 2014, 10(1):21-33.
doi: 10.1016/j.bspc.2013.12.003 |
[11] |
Jung T P, Makeig S, Humphries C, et al. Removing electroencephalographic artifacts by blind source separate-on[J]. Psychophysiology, 2000, 37(2):163-178.
pmid: 10731767 |
[12] | Sejnowski T J. Independent component analysis of electroencephalographic data[J]. Advances in Neural Information processing Systems, 1996, 8(8):1548-1551. |
[13] | Ablin P, Cardoso J F, Gramfort A. Spectral independent component analysis with noise modeling for M/EEG source separation[J]. Journal of Neuroscience Methods, 2021, 356(1):9-21. |
[14] |
Albera L, Kachenoura A, Comon P, et al. ICA-based EEG denoising: A comparative analysis of fifteen methods[J]. Bulletin of the Polish Academy of Sciences,Technical Sciences, 2012, 60(3):407-418.
doi: 10.2478/v10175-012-0052-3 |
[15] |
Bell A J, Sejnowski T J. An information-maximization approach to blind separation and blind deconvolution[J]. Neural Computation, 1995, 7(6):1129-1159.
doi: 10.1162/neco.1995.7.6.1129 pmid: 7584893 |
[16] |
Hyvärinen A, Oja E. A fast fixed-point algorithm for i-ndependent component analysis[J]. Neural Computation, 1997, 9(7):1483-1492.
doi: 10.1162/neco.1997.9.7.1483 |
[17] | 王建雄, 张立民, 钟兆根. 基于FastICA算法的盲源分离[J]. 计算机技术与发展, 2011, 21(12):93-96. |
Wang Jianxiong, Zhang Limin, Zhong Zhaogen. Blind s-ource separation based on FastICA algorithm[J]. Computer Technology and Development, 2011, 21(12):93-96. | |
[18] |
Pontifex M B, Miskovic V, Laszlo S. Evaluating the efficacy of fully automated approaches for the selection of eyeblink ICA components[J]. Psychophysiology, 2017, 54(5):780-791.
doi: 10.1111/psyp.12827 pmid: 28191627 |
[19] |
Hazarika N, Chen J Z, Tsoi A C, et al. Wavelet transform[J]. Signal Processing, 1997, 59(1):61-72.
doi: 10.1016/S0165-1684(97)00038-8 |
[20] | Sharma R K. EEG signal denoising based on wavelet transform[C]. Coimbatore: Proceedings of the International Conference of Electronics,Communication and Aerospace Technology, 2017. |
[21] | 胡春海, 信思旭, 刘斌, 等. 基于小波变换和盲源分离的P300识别算法研究[J]. 计量学报, 2017, 38(2):242-246. |
Hu Chunhai, Xin Sixu, Liu Bin, et al. Study on recognition algorithm of P300 based on wavelet transform and blind source separation[J]. Acta Metrologica Sinica, 2017, 38(2):242-246. | |
[22] |
Donoho D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3):613-627.
doi: 10.1109/18.382009 |
[23] | 于向洋, 罗志增. 基于小波系数非线性连续函数衰减的脑电信号去噪[J]. 计量学报, 2017, 38(6):754-757. |
Yu Xiangyang, Luo Zhizeng. EEG signal denoising based on a wavelet nonlinear continuous function[J]. Acta Metrologica Sinica, 2017, 38(6):754-757. | |
[24] | 孙铭阳, 谢子殿, 韩龙, 等. 自适应阈值函数小波算法的电机振动信号去噪[J]. 电子科技, 2020, 33(1):63-67. |
Sun Mingyang, Xie Zidian, Han Long, et al. Motor vibration signal denoising of adaptive threshold function wavelet algorithm[J]. Electronic Science and Technology, 2020, 33(1):63-67. | |
[25] | Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings Mathematical Physical & Engineering Sciences, 1998, 454(1971):903-995. |
[26] | Gaur P, Pachori R B, Hui W, et al. An empirical mode decomposition based filtering method for classification of motor-imagery EEG signals for enhancing braincomputer interface[C]. Killarney: Proceedings of the International Joint Conference on Neural Networks, 2015. |
[27] | 郝欢, 王华力, 魏勤. 经验模态分解理论及其应用[J]. 高技术通讯, 2016, 26(1):67-80. |
Hao Huan, Wang Huali, Wei Qin. Theory of empirical mode decomposition and its application[J]. Chinese High Technology Letters, 2016, 26(1):67-80. | |
[28] |
Wu Z H, Huang N E. Ensemble empirical mode decomposition:A noiseassisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1):1-41.
doi: 10.1142/S1793536909000047 |
[29] |
Yeh J R, Shieh J S, Huang N E. Complementary ensemble empirical mode decomposition:A novel noise enhanced data analysis method[J]. Advances in Adaptive Data Analysis, 2010, 2(2):135-156.
doi: 10.1142/S1793536910000422 |
[30] | 郑近德, 程军圣, 杨宇. 改进的EEMD算法及其应用研究[J]. 振动与冲击, 2013, 32(21):21-26. |
Zheng Jinde, Cheng Junsheng, Yang Yu. Modified EEMD algorithm and its applications[J]. Journal of Vibratiion and Shock, 2013, 32(21):21-26. | |
[31] | Mahajan R, Morshed B I. Unsupervised eye blink artifact denoising of EEG data with modified multiscale sample entropy,kurtosis and wavelet-ICA[J]. IEEE Journal of Biomedical & Health Informatics, 2014, 19(1):158-165. |
[32] |
Mammone N, Morabito F C. Enhanced automatic wavelet independent component analysis for electroencephalographic artifact removal[J]. Entropy, 2014, 16(12):6553-6572.
doi: 10.3390/e16126553 |
[33] |
Gao J F, Lin P, Yang Y, et al. Real-time removal of ocu-lar artifacts from EEG based on independent component analysis and manifold learning[J]. Neural Computing and Applications, 2010, 19(8):1217-1226.
doi: 10.1007/s00521-010-0370-z |
[34] |
Chen X, Liu A, Peng H, et al. A preliminary study of muscular artifact cancellation in single-channel EEG[J]. Sensors, 2014, 14(10):18370-18389.
doi: 10.3390/s141018370 pmid: 25275348 |
[35] | Bono V, Jamal W, Das S, et al. Artifact reduction in mu-ltichannel pervasive EEG using hybrid WPT-ICA and WPT-EMD signal decomposition techniques[C]. Florence: Proceedings of the IEEE International Conference on Acoustics,Speech and Signal Processing, 2014. |
[36] | 闫超, 孙占全, 田恩刚, 等. 基于深度学习的医学图像分割技术研究进展[J]. 电子科技, 2021, 34(2):7-11. |
Yan Chao, Sun Zhanquan, Tian Engang, et al. Research progress of medical image segmentation based on deep learning[J]. Electronic Science and Technology, 2021, 34(2):7-11. | |
[37] | 孟昕. 基于深度学习的法律文书识别方法研究[J]. 电子科技, 2019, 32(12):84-86. |
Meng Xin. Research on recognition method of legal documents based on deep learning[J]. Electronic Science and Technology, 2019, 32(12):84-86. | |
[38] | Corley I A, Huang Y. Deep EEG super-resolution:Upsa-mpling EEG spatial resolution with generative adversarial networks[C]. Las Vegas: Proceedings of the IEEE EMBS International Conference on Biomedical & Health Informatics, 2018. |
[39] |
Fahimi F, Dosen S, Ang K K, et al. Generative adversarial networks-based data augmentation for brain-computer interface[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(9):4039-4051.
doi: 10.1109/TNNLS.2020.3016666 |
[40] | Hanrahan C. Noise reduction in EEG signals using convolutional autoencoding techniques[D]. Dublin: Technological University Dublin, 2019. |
[41] | Zhang H, Zhao M, Wei C, et al. EEG denoiseNet:A benchmark dataset for deep learning solutions of EEG denoising[J]. Journal of Neural Engineering, 2021, 18(5):1-16. |
[42] | Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]. Montreal: Proceedings of the Twenty-seventh Conference on Neural Information Processing Systems, 2014. |
[43] | Johnson J, Gupta A, Fei-Fei L. Image generation from scene graphs[C]. Salt Lake City: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018. |
[44] | Yi Z, Zhang H, Tan P, et al. DualGAN:Unsupervised dual learning for image-to-image translation[C]. Venice: I-EEE International Conference on Computer Vision, 2017. |
[45] |
Lin G, Wu Q, Liang C, et al. Deep unsupervised learning for image super-resolution with generative adversarial network[J]. Signal Processing Image Communication, 2018, 68:88-100.
doi: 10.1016/j.image.2018.07.003 |
[46] | 姚粤汉. 脑电信号的伪迹去除与情绪识别研究[D]. 广州: 华南理工大学, 2020. |
Yao Yuehan. Study on EEG artifacts removal and emotion recognition[D]. Guangzhou: South China University of Technology, 2020. | |
[47] |
Yang B, Duan K, Fan C, et al. Automatic ocular artifacts adversarial in EEG using deep learning[J]. Biomedical Signal Processing and Control, 2018, 43:148-158.
doi: 10.1016/j.bspc.2018.02.021 |
[48] |
Mclntosh J R, Yao J A, Hong L B, et al. Ballistocardiogram artifact reduction in simultaneous EEG-fMRI using deep learning[J]. IEEE Transactions on Biomedical Engineering, 2021, 68(1):78-89.
doi: 10.1109/TBME.10 |
[49] | Zhang H M, Wei C, Zhao M Q, et al. A novel convolutional neural network model to remove muscle artifacts from EEG[C]. Toronto: Proceedings of the IEEE International Conference on Acoustics,Speech and Signal Processing, 2021. |
[50] |
Sun W Y, Su Y P, Wu X, et al. A novel end-to-end 1D-ResCNN model to remove artifact from EEG signals[J]. Neurocomputing, 2020, 404(9):108-121.
doi: 10.1016/j.neucom.2020.04.029 |
[1] | CUI Zhuodong,CHEN Wei,YIN Zhong. Helmet Wearing Detection Based on Enhanced Feature Fusion Network [J]. Electronic Science and Technology, 2023, 36(4): 44-51. |
[2] | TANG Zheng,ZHANG Huilin,MA Lixin,LIU Jinzhi,WANG Hao. Identification of Foreign Objects on Transmission Lines Using Lightweight Network Algorithm [J]. Electronic Science and Technology, 2023, 36(4): 71-77. |
[3] | BAI Yingqi,PALIDAN·Tuerxun . A Scientific Literature Recommendation Method Based on Multi-Task Learning [J]. Electronic Science and Technology, 2023, 36(4): 59-64. |
[4] | LU Dongxiang. Research Progress of Node Assignment Optimization Strategy in Road Traffic Network [J]. Electronic Science and Technology, 2023, 36(3): 81-86. |
[5] | ZHAO Wenjun,ZHAI Han,ZHANG Hongyan. Total Variation and Sparsity Regularized Deep Nonnegative Matrix Factorization for Hyperspectral Unmixing [J]. Electronic Science and Technology, 2023, 36(2): 53-60. |
[6] | YU Qiongfang,NIU Dongyang. Mixed Prediction of Mine Pressure Time and Space Based on LSTM Network [J]. Electronic Science and Technology, 2023, 36(2): 67-72. |
[7] | ZUO Bin,LI Feifei. An Effective Segmentation Method for COVID-19 CT Image Based on Attention Mechanism and Inf-Net [J]. Electronic Science and Technology, 2023, 36(2): 22-28. |
[8] | WU Tong,YU Lianzhi. The Recommendation Algorithm of Extreme Deep Factorization Machine Merged with Attention Network [J]. Electronic Science and Technology, 2023, 36(1): 38-43. |
[9] | WANG Yumei,ZHENG Yi. Harmonic Detection Technology Based on Improved Wavelet Threshold Denoising and CEEMDAN-HT Fusion [J]. Electronic Science and Technology, 2023, 36(1): 60-66. |
[10] | BI Jiazhen,SHEN Tuo,ZHANG Xuanxiong. A Research on Distance Measurement Between Trains in Rail Transit Based on Machine Vision [J]. Electronic Science and Technology, 2022, 35(9): 37-43. |
[11] | ZHANG Qiaomu,ZHONG Qianwen,SUN Ming,LUO Wencheng,CHAI Xiaodong. Research on Dynamic Monitoring Method of Pantograph-Net Contact Position in Complex Environment [J]. Electronic Science and Technology, 2022, 35(8): 66-72. |
[12] | ZHANG Maolin,YE Qingzhou,PAN Xin,LU Hua. Quality Inspection Algorithm of Chemical Packaging Bag Coding Based on Tesseract_OCR [J]. Electronic Science and Technology, 2022, 35(7): 27-31. |
[13] | ZHAO Xuan,ZHOU Fan,YU Hancheng. Improved YOLOv3 Model Based on New Feature Extraction and Fusion Module [J]. Electronic Science and Technology, 2022, 35(7): 40-45. |
[14] | Yanmei YANG,Zongmao CHENG. Prediction of PM2.5 Based on External Influences and Time-Series Factors [J]. Electronic Science and Technology, 2022, 35(3): 51-57. |
[15] | Peng CHEN,Zilong LIU. Arrhythmia Recognition Based on GAN-CNN [J]. Electronic Science and Technology, 2022, 35(3): 45-50. |
|