Electronic Science and Technology ›› 2023, Vol. 36 ›› Issue (4): 59-64.doi: 10.16180/j.cnki.issn1007-7820.2023.04.008
Previous Articles Next Articles
BAI Yingqi1,PALIDAN·Tuerxun 2
Received:
2021-11-24
Online:
2023-04-15
Published:
2023-04-21
Supported by:
CLC Number:
BAI Yingqi,PALIDAN·Tuerxun . A Scientific Literature Recommendation Method Based on Multi-Task Learning[J].Electronic Science and Technology, 2023, 36(4): 59-64.
[1] | Guy I, Zwerdling N, Ronen I, et al. Social media recommendation based on people and tags[C]. Geneva: Proceedings of the Thirty-third International ACM SIGIR Conference on Research and Development in Information Retrieval, 2010. |
[2] | Phelan O, McCarthy K, Smyth B. Using twitter to recommend real-time topical news[C]. New York: Proceedings of the Third ACM Conference on Recommender Systems, 2009. |
[3] | McAuley J, Leskovec J. Hidden factors and hidden topics: Understanding rating dimensions with review text[C]. Hong Kong: Proceedings of the Seventh ACM Conference on Recommender Systems, 2013. |
[4] | Chong W, Blei D M. Collaborative topic modeling for recommending scientific articles[C]. San Diego: Proceedings of the Seventeenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2011. |
[5] | Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8):30-37. |
[6] | Dai A M, Le Q V. Semi-supervised sequence learning[C]. Cambridge: Proceedings of the Twenty-eighth International Conference on Neural Information Processing Systems, 2015. |
[7] | Schein A I, Popescul A, Ungar L H, et al. Methods and metrics for cold-start recommendations[C]. Tampere: Proceedings of the Twenty-fifth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2002. |
[8] | Wang H, Wang N Y, Yeung D Y. Collaborative deep learning for recommender systems[C]. Sydney: Proceedings of the Twenty-first ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015. |
[9] | Melville P, Mooney R J, Nagarajan R. Content-boosted collaborative filtering for improved recommendations[C]. Edmonton: Proceedings of the Eighteenth National Conference on Artificial Intelligence, 2002. |
[10] | Agarwal D, Chen B C. Regression-based latent factor models[C]. Paris: Proceedings of the Fifteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2009. |
[11] | Singh A P, Gordon G J. Relational learning via collective matrix factorization[C]. Las Vegas: Proceedings of the Fourteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2008. |
[12] | Ma H, Yang H, Lyu M R, et al. SoRec:Social recommendation using probabilistic matrix factorization[C]. Napa Valley: Proceedings of the Seventeenth ACM Conference on Information and Knowledge Management, 2008. |
[13] | Almahairi A, Kastner K, Cho K, et al. Learning distributed representations from reviews for collaborative filtering[C]. Vienna: Proceedings of the Ninth ACM Conference on Recommender Systems, 2015. |
[14] | Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality[C]. New York: Proceedings of the Twenty-sixth International Conference on Neural Information Processing Systems, 2013. |
[15] | 彭慧洁. 融合多维信息的协同过滤算法研究[J]. 电子科技, 2017, 30(2):42-44. |
Peng Huijie. The research on collaborative filtering algorithm of multi-dimensional information[J]. Electronic Science and Technology, 2017, 30(2):42-44. | |
[16] |
Bell R M, Koren Y. Lessons from the netflix prize challenge[J]. ACM SIGKDD Explorations Newsletter, 2007, 9(2):75-79.
doi: 10.1145/1345448.1345465 |
[17] | Krestel R, Fankhauser P, Nejdl W. Latent dirichlet allocation for tag recommendation[C]. New York: Proceedings of the Third ACM Conference on Recommender Systems, 2009. |
[18] | Sedhain S, Menon A K, Sanner S, et al. Autorec: Autoencoders meet collaborative filtering[C]. Florence: Proceedings of the Twenty-fourth International Conference on World Wide Web, 2015. |
[19] | He H, McAuley J. VBPR: Visual bayesian personalized ranking from implicit feedback[C]. Phoenix: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 2016. |
[20] |
Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks, 1994, 5(2):157-166.
doi: 10.1109/72.279181 pmid: 18267787 |
[21] | Cho K, Merrienboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]. Doha: Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2014. |
[22] |
Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
doi: 10.1162/neco.1997.9.8.1735 pmid: 9377276 |
[23] | Li J, Chen X L, Hovy E, et al. Visualizing and understanding neural models in NLP[C]. San Diego:Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2016. |
[24] | Weston J, Bengio S, Usunier N. Wsabie: Scaling up to large vocabulary image annotation[C]. Barcelona: Proceedings of the Twenty-second International Joint Conference on Artificial Intelligence, 2011. |
[1] | CUI Zhuodong,CHEN Wei,YIN Zhong. Helmet Wearing Detection Based on Enhanced Feature Fusion Network [J]. Electronic Science and Technology, 2023, 36(4): 44-51. |
[2] | TANG Zheng,ZHANG Huilin,MA Lixin,LIU Jinzhi,WANG Hao. Identification of Foreign Objects on Transmission Lines Using Lightweight Network Algorithm [J]. Electronic Science and Technology, 2023, 36(4): 71-77. |
[3] | SUN Hong,LU Meike. Hybrid Recommendation Algorithm Fused with User Behavior Sequence Prediction [J]. Electronic Science and Technology, 2023, 36(4): 84-89. |
[4] | LUO Ruipeng,FENG Mingke,HUANG Xin,ZOU Renling,LI Dan. A Review of Research on EEG Signal Preprocessing Methods [J]. Electronic Science and Technology, 2023, 36(4): 36-43. |
[5] | LU Dongxiang. Research Progress of Node Assignment Optimization Strategy in Road Traffic Network [J]. Electronic Science and Technology, 2023, 36(3): 81-86. |
[6] | ZHAO Wenjun,ZHAI Han,ZHANG Hongyan. Total Variation and Sparsity Regularized Deep Nonnegative Matrix Factorization for Hyperspectral Unmixing [J]. Electronic Science and Technology, 2023, 36(2): 53-60. |
[7] | YU Qiongfang,NIU Dongyang. Mixed Prediction of Mine Pressure Time and Space Based on LSTM Network [J]. Electronic Science and Technology, 2023, 36(2): 67-72. |
[8] | ZUO Bin,LI Feifei. An Effective Segmentation Method for COVID-19 CT Image Based on Attention Mechanism and Inf-Net [J]. Electronic Science and Technology, 2023, 36(2): 22-28. |
[9] | WU Tong,YU Lianzhi. The Recommendation Algorithm of Extreme Deep Factorization Machine Merged with Attention Network [J]. Electronic Science and Technology, 2023, 36(1): 38-43. |
[10] | BI Jiazhen,SHEN Tuo,ZHANG Xuanxiong. A Research on Distance Measurement Between Trains in Rail Transit Based on Machine Vision [J]. Electronic Science and Technology, 2022, 35(9): 37-43. |
[11] | ZHANG Qiaomu,ZHONG Qianwen,SUN Ming,LUO Wencheng,CHAI Xiaodong. Research on Dynamic Monitoring Method of Pantograph-Net Contact Position in Complex Environment [J]. Electronic Science and Technology, 2022, 35(8): 66-72. |
[12] | ZHAO Xuan,ZHOU Fan,YU Hancheng. Improved YOLOv3 Model Based on New Feature Extraction and Fusion Module [J]. Electronic Science and Technology, 2022, 35(7): 40-45. |
[13] | SUN Kang,XUAN Xuyang,LIU Penghui,ZHAO Laijun,LONG Jie. Partial Discharge Pattern Recognition of Cable Based on CNN-DCGAN under Small Data [J]. Electronic Science and Technology, 2022, 35(7): 7-13. |
[14] | Chaowei LIN,Feifei LI,Qiu CHEN. Globaland Local Scene Representation Method Based on Deep Convolutional Features [J]. Electronic Science and Technology, 2022, 35(4): 20-27. |
[15] | Peng CHEN,Zilong LIU. Arrhythmia Recognition Based on GAN-CNN [J]. Electronic Science and Technology, 2022, 35(3): 45-50. |
|