Electronic Science and Technology ›› 2023, Vol. 36 ›› Issue (3): 81-86.doi: 10.16180/j.cnki.issn1007-7820.2023.03.013
LU Dongxiang
Received:
2022-01-30
Online:
2023-03-15
Published:
2023-03-16
Supported by:
CLC Number:
LU Dongxiang. Research Progress of Node Assignment Optimization Strategy in Road Traffic Network[J].Electronic Science and Technology, 2023, 36(3): 81-86.
[1] | Hooper C J. The need for further research on traffic assignment[J]. Highway Research Board Bulletin, 1952, 61(1):66-70. |
[2] | Brown R M, Weaver H H. Traffic assignment using IBM computations and summation[J]. Highway Research Board Bulletin, 1956, 130(1):47-58. |
[3] | Morgan H L. UTS-I:A macro system for traffic network simulation[C]. Chicago: Proceedings of the Spring Joint Computer Conference,1970. |
[4] | Williams J C, Mahmassani H S, Herman R. Urban traffic network flow models[J]. Transportation Research Record, 1987, 1(1):78-88. |
[5] | Jayakrishnan R, Mahmassani H S. Dynamic simulation assignment methodology to evaluate in-vehicle information strategies in urban traffic networks[C]. Boston: Winter Simulation Conference Proceeding,1990. |
[6] | Rouvellou I, Hart G W. Topology identification for traffic and configuration management in dynamic networks[C]. Berlin:IEEE Infocom the Eleventh Joint Conference of the Computer & Communications Societies,1992. |
[7] |
Gegov A E. Hierarchical dispatching control of urban traffic systems[J]. European Journal of Operational Research, 1993, 71(2):235-246.
doi: 10.1016/0377-2217(93)90051-N |
[8] |
Feng L, Zhou C, Wan Q. An optimum vehicular path algorithm for traffic network based on hierarchical spatial reasoning[J]. Geo-Spatial Information Science, 2000, 3(4):36-42.
doi: 10.1007/BF02829394 |
[9] |
Patel M, Ranganathan N. IDUTC:An intelligent decision making system for urban traffic-control applications[J]. IEEE Transactions on Vehicular Technology, 2001, 50(3):816-829.
doi: 10.1109/25.933315 |
[10] |
Franke U, Heinrich S. Fast obstacle detection for urbantraffic situations[J]. IEEE Transactions on Intelligent Transportation Systems, 2002, 3(3):173-181.
doi: 10.1109/TITS.2002.802934 |
[11] | Fuerstenberg K C, Dietmayer K, Willhoeft V. Pedestrian recognition in urban traffic using a vehicle based multilayer laserscanner[C]. Los Angeles: IEEE Intelligent Vehicle Symposium, 2002. |
[12] | Berg M, Hegyi A, Schutter B D, et al. A macroscopic traffic flow model for integrated control of freeway and urban traffic networks[C]. San Diego: IEEE Conference on Decision and Control, 2003. |
[13] | Meneses A, Osório I. Urban traffic flow prediction by using GPS and neural networks theory[C]. San Diego: Proceedings of the National Technical Meeting of theInstitute of Navigation, 2004. |
[14] | Montis A D, Barthélemy M, Chessa A, et al. The structure of Inter-Urban traffic:A weighted network analysis[J]. Environment & Planning B:Planning & Design, 2005, 34(5):905-924. |
[15] |
Kosmatopoulos E B, Papageorgiou M, Vakouli A, et al. Adaptive fine-tuning of nonlinear control systems with application to the urban traffic control strategy TUC[J]. IEEE Transactions on Control Systems Technology, 2007, 15(6):991-1002.
doi: 10.1109/TCST.2007.899645 |
[16] | Chen R S, Chen D K, Lin S Y. ACTAM:Cooperative multi-agent system architecture for urban traffic signal control[J]. IEICE Transactions on Information & Systems, 2005, 88(1):119-126. |
[17] | Long J C, Gao Z Y, REN H L, et al. Urban traffic congestion propagation and bottleneck identification[J]. Science in China(Series F:Information Sciences), 2008, 1(7):948-964. |
[18] | 胡一竑, 吴勤旻, 朱道立. 城市道路网络的拓扑性质和脆弱性分析[J]. 复杂系统与复杂性科学, 2009(3):69-76. |
Hu Yihong, Wu Qinmin, Zhu Daoli. Topological properties and vulnerability analysis of spatial urban street networks[J]. Complex Systems and Complexity Science, 2009(3):69-76. | |
[19] | Li W, Pan S, Zhang Y, et al. Urban traffic complex network hub node analysis and signal control optimization strategy research[C]. Dalian: Proceedings of Chinese Control and Decision Conference, 2010. |
[20] |
Lin S, Schutter B D, Xi Y G, et al. Efficient network wide model-based predictive control for urban traffic networks[J]. Transportation Research Part C:Emerging Technologies, 2012, 24(9):122-140.
doi: 10.1016/j.trc.2012.02.003 |
[21] |
Lin S, Schutter B D, Xi Y, et al. Integrated urban traffic control for the reduction of travel delays and emissions[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(4):1609-1619.
doi: 10.1109/TITS.2013.2263843 |
[22] |
Olmo P D, Ricciardi N, Sgalambro A. A multiperiod maximal covering location model for the optimal location of intersection safety cameras on an urban trafficnetwork[J]. Procedia-Social and Behavioral Sciences, 2014, 108(1):106-117.
doi: 10.1016/j.sbspro.2013.12.824 |
[23] | Moretti F, Panzieri S, et al. Urban traffic flow forecasting through statistical and neural network bagging ensemble hybrid modeling[J]. Neurocomputing, 2015, 36(7):321-329. |
[24] | 丁恒, 郭放, 郑小燕, 等. 基于时空检测的城市交通网络瓶颈识别方法研究[J]. 合肥工业大学学报(自然科学版), 2016, 39(7):868-874. |
Ding Heng, Guo Fang, Zheng Xiaoyan, et al. Urban traffic network bottleneck identification based on temporaland spatial detection[J]. Journal of Hefei University of Technology(Natural Science), 2016, 39(7):868-874. | |
[25] | 苏飞, 董宏辉, 贾利民, 等. 基于时空相关性的城市交通路网关键路段识别[J]. 交通运输系统工程与信息, 2017, 17(3):213-221. |
Su Fei, Dong Honghui, Jia Limin, et al. Identification of critical section in urban traffic road network based on space-time correlation[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(3):213-221. | |
[26] | 冯慧芳, 柏凤山, 徐有基. 基于轨迹大数据的城市交通感知和路网关键节点识别[J]. 交通运输系统工程与信息, 2018, 18(3):42-47,54. |
Feng Huifang, Bai Fengshan, Xu Youji. Urban traffic perception and critical node identification of road network based on trajectory big data[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(3):42-47,54. | |
[27] |
Fan Z, Liu C, Cai D, et al. Research on black spot identification of safety in urban traffic accidents based onmachine learning method[J]. Safety Science, 2019, 118(2):607-616.
doi: 10.1016/j.ssci.2019.05.039 |
[28] |
Holmgren J, Knapen L, Olsson V, et al. On the use of clustering analysis for identification of unsafe places in an urban traffic network[J]. Procedia Computer Science, 2020, 170(1):187-194.
doi: 10.1016/j.procs.2020.03.024 |
[29] | Yu H Y, Fang J, Liu S, et al. A node optimization model based on the spatiotemporal characteristics of the road network for urban traffic mobile crowd sensing[J]. Vehicular Communications, 2021, 31(1):1-12. |
[30] | Lu B, Gan X Y, Jin H M, et al. Make more connections:Urban traffic flow forecasting with spatiotemporal adaptive gated graph convolution network[J]. ACM Transactions on Intelligent Systems and Technology, 2022, 13(2):1-25. |
[31] | Teo K, Kow W Y, Chin Y K. Optimization of traffic flow within an urban traffic light intersection with genetic algorithm[C]. Bangkok: the Second International Conference on Computational Intelligence, 2010. |
[32] |
Ramazani H, Shafahi Y, Seyedabrishami S E. A fuzzy traffic assignment algorithm based on driver perceivedtravel time of network links[J]. Scientia Iranica, 2011, 18(2):190-197.
doi: 10.1016/j.scient.2011.03.028 |
[33] | Wei H, Viti F, Tampere C. An iterative learning approach for signal control in urban traffic networks[C]. Dallas: International IEEE Conference on Intelligent Transportation Systems, 2013. |
[34] |
Dezani H, Bassi R, Marranghello N, et al. Optimizing urban traffic flow using genetic algorithm with petri net analysis as fitness function[J]. Neurocomputing, 2014, 124(2):162-167.
doi: 10.1016/j.neucom.2013.07.015 |
[35] |
Gentile G. Using the general link transmission model in a dynamic traffic assignment to simulate congestion on urban networks[J]. Transportation Research Procedia, 2015, 5(1):66-81.
doi: 10.1016/j.trpro.2015.01.011 |
[36] |
Hu W B, Wang H. A swarm intelligent method for traffic light scheduling: application to real urban traffic networks[J]. Applied Intelligence, 2016, 44(1):208-231.
doi: 10.1007/s10489-015-0701-y |
[37] | Ahn G H, Ki Y K, Kim E J. Real-time estimation of travel speed using urban traffic information system and filtering algorithm[C]. Taipei: International Conference on Systems, 2017. |
[38] | 蒋阳升, 王逸, 赵斌, 等. 基于单向交通组织的城市交通微循环网络优化设计[J]. 综合运输, 2019, 41(1):65-70,126. |
Jiang Yangsheng, Wang Yi, Zhao Bin, et al. Optimizationdesign of urban traffic microcirculation network basedon one-way traffic organization[J]. China Transportation Review, 2019, 41(1):65-70,126. | |
[39] | Yu K, Wang Y, Zhao W. Safety evaluation system of urban traffic network based on topological genetic algorithm[J]. Journal of Intelligent and Fuzzy Systems, 2020, 38(3):1-8. |
[40] | Wu Z, Huang M X, Zhao A, et al. Urban traffic planning and traffic flow prediction based on Ulchis gravity model and Dijkstra algorithm[J]. Journal of Physics: Conference Series, 2021, 1972(1):1-11. |
[1] | YING Jieyao. Research Progress of Smart Grid Data Security Based on Internet of Things Technology [J]. Electronic Science and Technology, 2023, 36(3): 76-80. |
[2] | ZUO Bin,LI Feifei. An Effective Segmentation Method for COVID-19 CT Image Based on Attention Mechanism and Inf-Net [J]. Electronic Science and Technology, 2023, 36(2): 22-28. |
[3] | ZHAO Wenjun,ZHAI Han,ZHANG Hongyan. Total Variation and Sparsity Regularized Deep Nonnegative Matrix Factorization for Hyperspectral Unmixing [J]. Electronic Science and Technology, 2023, 36(2): 53-60. |
[4] | YU Qiongfang,NIU Dongyang. Mixed Prediction of Mine Pressure Time and Space Based on LSTM Network [J]. Electronic Science and Technology, 2023, 36(2): 67-72. |
[5] | WU Tong,YU Lianzhi. The Recommendation Algorithm of Extreme Deep Factorization Machine Merged with Attention Network [J]. Electronic Science and Technology, 2023, 36(1): 38-43. |
[6] | BI Jiazhen,SHEN Tuo,ZHANG Xuanxiong. A Research on Distance Measurement Between Trains in Rail Transit Based on Machine Vision [J]. Electronic Science and Technology, 2022, 35(9): 37-43. |
[7] | ZHANG Qiaomu,ZHONG Qianwen,SUN Ming,LUO Wencheng,CHAI Xiaodong. Research on Dynamic Monitoring Method of Pantograph-Net Contact Position in Complex Environment [J]. Electronic Science and Technology, 2022, 35(8): 66-72. |
[8] | ZHAO Xuan,ZHOU Fan,YU Hancheng. Improved YOLOv3 Model Based on New Feature Extraction and Fusion Module [J]. Electronic Science and Technology, 2022, 35(7): 40-45. |
[9] | CHENG Shunda,CHENG Ying,SUN Shijiang. Tumor Intelligent Auxiliary Diagnosis Method Based on Machine Learning [J]. Electronic Science and Technology, 2022, 35(5): 56-59. |
[10] | Peng CHEN,Zilong LIU. Arrhythmia Recognition Based on GAN-CNN [J]. Electronic Science and Technology, 2022, 35(3): 45-50. |
[11] | LI Na,GAO Bo,XIE Zongfu. Research on Scheduling Method of Layered Heterogeneous Signal Processing Platform [J]. Electronic Science and Technology, 2022, 35(2): 7-13. |
[12] | YU Runrun,JIANG Xiaoyan,ZHU Kaiying,JIANG Guanghao. Real-Time Image Semantic Segmentation Based on Contextual Attention Mechanism [J]. Electronic Science and Technology, 2022, 35(12): 57-63. |
[13] | DENG Lei,SUN Peiyang. Research on Network Public Opinion Monitoring System Based on Deep Learning [J]. Electronic Science and Technology, 2022, 35(12): 97-102. |
[14] | ZHANG Ye,BAO Liang. Research Progress of Service Composition Based on Machine Learning [J]. Electronic Science and Technology, 2022, 35(11): 58-63. |
[15] | ZHANG Wei,LIU Na,JIANG Yang,LI Qingdu. Garbage Detection and Classification Based on YOLO Neural Network [J]. Electronic Science and Technology, 2022, 35(10): 45-50. |
|