Electronic Science and Technology ›› 2023, Vol. 36 ›› Issue (4): 65-70.doi: 10.16180/j.cnki.issn1007-7820.2023.04.009
Previous Articles Next Articles
SUN Hong,ZHANG Yuxiang
Received:
2021-10-29
Online:
2023-04-15
Published:
2023-04-21
Supported by:
CLC Number:
SUN Hong,ZHANG Yuxiang. Super-Resolution Image Reconstruction Algorithm Based on Multi-Feature Gated Feedback Residual Network[J].Electronic Science and Technology, 2023, 36(4): 65-70.
Table 3.
Comparison of average PSNR by different super-resolution algorithms on five data sets"
数据集 | 缩放 因子 | Bicubic (PSNR/SSIM) | SRCNN (PSNR/SSIM) | VDSR (PSNR/SSIM) | EDSR (PSNR/SSIM) | DBPN (PSNR/SSIM) | SRFBN (PSNR/SSIM) | 本文算法 (PSNR/SSIM) |
---|---|---|---|---|---|---|---|---|
Set5 | ×2 | 33.66/0.929 9 | 36.66/0.954 2 | 37.53/0.959 0 | 38.11/0.960 2 | 38.09/0.960 0 | 38.11/0.960 9 | 38.13/0.961 2 |
×3 | 30.39 /0.868 2 | 32.75/0.909 0 | 33.67/0.921 0 | 34.65/0.928 0 | -/- | 34.70/0.929 2 | 34.72/0.929 2 | |
×4 | 28.42/0.810 4 | 30.48/0.862 8 | 31.35/0.883 0 | 32.46/0.896 8 | 32.47/0.898 0 | 32.47/0.898 3 | 32.50/0.899 0 | |
Set14 | ×2 | 30.24/0.868 8 | 33.45/0.906 7 | 33.05/0.913 0 | 33.92/0.919 5 | 33.85/0.919 0 | 33.82/0.919 6 | 33.84/0.919 8 |
×3 | 27.55 /0.774 2 | 29.30 /0.821 5 | 29.78 /0.832 0 | 30.52/0.846 2 | -/- | 30.51/0.846 1 | 30.54/0.846 5 | |
×4 | 26.00/0.702 7 | 27.50/0.751 3 | 28.02/0.768 0 | 28.80/0.787 6 | 28.82/0.786 0 | 28.81/0.786 8 | 28.83/0.788 5 | |
B100 | ×2 | 29.56/0.843 1 | 31.36/0.887 9 | 31.90/0.896 0 | 32.32/0.901 3 | 32.27/0.900 0 | 32.29/0.901 0 | 32.32/0.901 6 |
×3 | 27.21 /0.738 5 | 28.41 /0.786 3 | 28.83 /0.799 0 | 29.25/0.809 3 | -/- | 29.24/0.808 4 | 29.25/0.808 7 | |
×4 | 25.96/0.667 5 | 26.90/0.710 1 | 27.29/0.072 6 | 27.71/0.742 0 | 27.72/0.740 0 | 27.72/0.740 9 | 27.75/0.742 2 | |
Urban100 | ×2 | 26.88/0.840 3 | 29.50/0.894 6 | 30.77/0.914 0 | 32.93/0.935 1 | 32.55/0.932 4 | 32.62/0.932 8 | 32.68/0.933 0 |
×3 | 24.46/0.734 9 | 26.24/0.798 9 | 27.14/0.829 0 | 28.80/0.865 3 | -/- | 28.73/0.864 1 | 28.76/0.864 4 | |
×4 | 23.14/0.657 7 | 24.52/0.722 1 | 25.18/0.754 0 | 26.64/0.803 3 | 26.38/0.794 6 | 26.60/0.801 5 | 26.65/0.804 2 | |
Manga109 | ×2 | 30.89/0.933 9 | 35.60/0.966 3 | 37.22/0.975 0 | 39.10/0.977 3 | 38.89/0.977 5 | 39.08/0.977 9 | 39.10/0.977 5 |
×3 | 26.95/0.855 6 | 30.48/0.911 7 | 32.01/0.934 0 | 34.17/0.947 6 | -/- | 34.18/0.948 1 | 34.21/0.948 5 | |
×4 | 24.89/0.786 6 | 27.58/0.855 5 | 28.83/0.887 0 | 31.02/0.914 8 | 30.91/0.913 7 | 31.15/0.916 0 | 31.12/0.916 2 |
[1] | Zhang J Q, Long C J, Wang Y X, et al. A two-stage at-tentive network for single image super-resolution[J]. I-EEE Transactions on Circuits and Systems for Video Technology, 2021, 23(6):1-14. |
[2] |
Dong C, Loy C C, He K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(2):295-307.
doi: 10.1109/TPAMI.2015.2439281 |
[3] | Dong C, Loy C C, Tang X. Accelerating the super-resolution convolutional neural network[C]. Las Vegas: Proceedings of the European Conference on Computer Vision, 2016. |
[4] | Shi W, Caballero J, Huszar F, et al. Real-time single im-age and video super-resolution using an efficient subpixel convolutional neural network[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. |
[5] | Kim J, Lee J K, Lee K M. Accurate image super-resol-ution using very deep convolutional networks[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. |
[6] | Leding C, Theis L, Huszár F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. |
[7] | Lim B, Son S, Kim H. Enhanced deep residual networks for single image super-resolution[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017. |
[8] | Tong T, Li G, Liu X, et al. Image super-resolution using dense skip connections[C]. Venice: Proceedings of the IEEE International Conference on Computer Vision, 2017. |
[9] | Zhang Y, Tian Y, Kong Y, et al. Residual dense network for image super-resolution[C]. Salt Lake City: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018. |
[10] | Haris M, Shakhnarovich G. Deep back-projection netw-orks for super-resolution[C]. Salt Lake City: Proceeding-s of the IEEE Conference on Computer Vision and Pattern Recognition, 2018. |
[11] | Liu Z S, Wang L W, Li C T, et al. Hierarchical back pr-ojection network for image super-resolution[C]. Long Beach: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2019. |
[12] | Liu Z S, Wang L W, Li C T. Image super-resolution via attention based back projection networks[J]. ICCV Workshops, 2019, 10(76):3517-3525. |
[13] | Li Z, Yang J, Liu Z. Feedback network for image super-resolution[C]. Long Beach: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019. |
[14] | Lee J, Park J, Lee K, et al. FBRNN: Feedback recurrent neural network for extreme image super-resolution[C]. Seattle: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2020. |
[15] | Behjati P, Rodriguez P, Mehri A, et al. Hierarchical resid-ual attention network for single image super-resolution[EB/OL].(2020-2-08) [2021-2-11]https://arxiv.org/pdf/2012.04578. |
[16] | 秦兴, 高晓琪, 陈滨. 基于压缩卷积神经网络的图像超分辨率算法[J]. 电子科技, 2020, 33(5):1-8. |
Qin Xing, Gao Xiaoqi, Chen Bin. Image super-resolution algorithm based on squeeze net convolution neural network[J]. Electronic Science and Technology, 2020, 33(5):1-8. | |
[17] | 顾伟, 李菲菲, 陈虬. 基于多特征融合的行人检测方法[J]. 电子科技, 2021, 34(5):29-34. |
Gu Wei, Li Feifei, Chen Qiu. Pedestrian detection algor-ithm based on multiple feature fusion[J]. Electronic S-cience and Technology, 2021, 34(5):29-34. | |
[18] | Bevilacqua M, Roumy A, Guillemot C. Low complexity singleimage super-resolution based on nonnegative neighbor embedding[J]. Proceedings British Machine Vision Conference, 2012, 135(10)1-10. |
[19] | Zeyde R, Elad M, Protter M. On single image scale-up using sparse-representations[C]. Heidelberg: Proceedings of the International Conference on Curves and Surfa-ces, 2010. |
[20] | Martin D, Fowlkes C, Tal D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]. Barcelona: Proceedings the Eighth IEEE International Conference on Computer Vision, 2001. |
[21] | Huang J B, Singh A, Ahuja N. Single image super-resolution from transformed self-exemplars[C]. Boston: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015. |
[22] |
Matsui Y, Ito K, Aramaki Y, et al. Sketch-based manga retrieval using manga 109 data set[J]. Multimedia Tools and Applications, 2017, 76(20):21811-21838.
doi: 10.1007/s11042-016-4020-z |
[23] | Kingma D P, Ba J. Adam: A method for stochastic op-timization[C]. San Diego: Proceedings of the International Conference on Learning Representations, 2015. |
[24] | Yang W, Zhang X, Tian Y, et al. Deep learning for single image super-resolution:A brief review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 21(12):3106- 3121. |
[1] | CUI Zhuodong,CHEN Wei,YIN Zhong. Helmet Wearing Detection Based on Enhanced Feature Fusion Network [J]. Electronic Science and Technology, 2023, 36(4): 44-51. |
[2] | SUN Hong,LU Meike. Hybrid Recommendation Algorithm Fused with User Behavior Sequence Prediction [J]. Electronic Science and Technology, 2023, 36(4): 84-89. |
[3] | HUANG Yuan,WEI Yunbing,TONG Dongbing,WANG Weigao. Short-Term Photovoltaic Power Prediction Based on VMD and Improved TCN [J]. Electronic Science and Technology, 2023, 36(3): 42-49. |
[4] | ZHAO Jin,LI Feifei. A GAN-Based Lightweight Style Transfer Model for Ink Painting [J]. Electronic Science and Technology, 2023, 36(2): 81-86. |
[5] | ZUO Bin,LI Feifei. An Effective Segmentation Method for COVID-19 CT Image Based on Attention Mechanism and Inf-Net [J]. Electronic Science and Technology, 2023, 36(2): 22-28. |
[6] | HUANG Yajing,LIAO Aihua,YU Miao,LI Xiaolong,HU Dingyu. An Improved CNN Method for Bearing Acoustic Fault Diagnosis [J]. Electronic Science and Technology, 2023, 36(1): 75-80. |
[7] | ZHANG Manjie,YANG Fangyan,JI Yunfeng. Research Progress of Body Posture Estimation in Ball Games [J]. Electronic Science and Technology, 2023, 36(1): 28-37. |
[8] | DENG Yuan,SHI Yiping,JIANG Yueying,ZHU Yamei,LIU Jin. Infant Expression Recognition Algorithm Based on MobileNetV2 and LBP Feature Fusion [J]. Electronic Science and Technology, 2022, 35(8): 47-52. |
[9] | ZHANG Qiaomu,ZHONG Qianwen,SUN Ming,LUO Wencheng,CHAI Xiaodong. Research on Dynamic Monitoring Method of Pantograph-Net Contact Position in Complex Environment [J]. Electronic Science and Technology, 2022, 35(8): 66-72. |
[10] | SUN Kang,XUAN Xuyang,LIU Penghui,ZHAO Laijun,LONG Jie. Partial Discharge Pattern Recognition of Cable Based on CNN-DCGAN under Small Data [J]. Electronic Science and Technology, 2022, 35(7): 7-13. |
[11] | CHEN Jinhong,CHEN Wei,YIN Zhong. Semantic Segmentation of Streetscape Based on Improved ExfuseNet [J]. Electronic Science and Technology, 2022, 35(6): 28-34. |
[12] | SHEN Ningjing,YUAN Jian. Crowd Counting Algorithm Based on Residual Dense Connection and Attention Fusion [J]. Electronic Science and Technology, 2022, 35(6): 6-12. |
[13] | Chaowei LIN,Feifei LI,Qiu CHEN. Globaland Local Scene Representation Method Based on Deep Convolutional Features [J]. Electronic Science and Technology, 2022, 35(4): 20-27. |
[14] | Lingyu JI,Yongbin GAO,Chenglu ZHAO,Xianhua TANG,Kaicheng XU,Jiacheng XU. CTA Segmentation Algorithm of Abdominal Artery Based on 3D Fully Convolutional Network [J]. Electronic Science and Technology, 2022, 35(3): 38-44. |
[15] | LI Hui,WANG Yicheng. CNNCIFG-Attention Model for Text Sentiment Classifcation [J]. Electronic Science and Technology, 2022, 35(2): 46-51. |
|