Electronic Science and Technology ›› 2023, Vol. 36 ›› Issue (4): 9-20.doi: 10.16180/j.cnki.issn1007-7820.2023.04.002
Previous Articles Next Articles
CHEN Chun1,SHU Huisheng1,KAN Xiu2,SUN Weizhou3
Received:
2021-10-21
Online:
2023-04-15
Published:
2023-04-21
Supported by:
CLC Number:
CHEN Chun,SHU Huisheng,KAN Xiu,SUN Weizhou. Identification and Statistical Analysis of Coal Macerals Based on the Idea of Peak Splitting[J].Electronic Science and Technology, 2023, 36(4): 9-20.
"
算法1 基于多策略的分峰峰位识别算法 |
---|
输入:各煤岩颗粒γ的反射率分布标准差std,通过自适应寻峰算法选取的所有有效峰(xpj,ypj),j=1,2,…,v。v为峰的个数。令镜质组峰偏移范围为[α, β],且峰位值为η。其中,E表示壳质组颗粒,V表示镜质组颗粒,I表示惰质组颗粒,B表示活惰结合颗粒。 输出:煤岩颗粒γ的所属类别,需要分峰的分峰峰位点( if std≤0.2 and ν=1: γ ∈ V end if if (std≤0.2 and ν>1) or std>0.2: if $ jk ∈ [1, ν],k=1,2,…,u, if ν=1: γ ∈ V else: let xpc= if " k ∈ [1, u],k1k0, max{ |
γ∈ B and xpb =xpc end if if $ kl ∈ [1, u],kl1k0, l∈ [1, w], min{ l∈ [1, w]}≥ if abs( l∈ [1, w]} : then γ ∈ B and xpb = end if end if else: if " j ∈ [1, v], γ∈ E elif " j ∈ [1, v], γ ∈ I else: γ∈ B and xpb =min{ end if end if end if 输出煤岩颗粒γ的所属类别,需要分峰的分峰峰位点(xpb, ypb)。 |
[1] | 边春杨, 徐秀丽, 姜雨. 煤岩显微组分对焦炭性能影响的研究进展[J]. 煤炭加工与综合利用, 2021(9):82-85. |
Bian Chunyang, Xu Xiuli, Jiang Yu. Research progress on the influence of coal maceral on coke properties[J]. Coal Processing & Comprehensive Utilization, 2021(9):82-85. | |
[2] | 李明珠, 艾福龙. 煤岩在炼焦配煤中的应用[J]. 冶金能源, 2021, 40(4):14-16. |
Li Mingzhu, Ai Fulong. Application of coal rock in coal blending[J]. Energy for Metallurgical Industry, 2021, 40(4):14-16. | |
[3] | 李涛, 方田, 韩永宁, 等. 煤岩自动测试技术浅谈[J]. 冶金能源, 2016, 35(3):57-60. |
Li Tao, Fang Tian, Han Yongning, et al. Coal petrologic automatic test technology[J]. Energy for Metallurgical Industry, 2016, 35(3):57-60. | |
[4] | 王越, 白向飞, 曲思建. 煤岩显微组分自动识别技术研究进展[J]. 煤质技术, 2021, 36(1):49-57. |
Wang Yue, Bai Xiangfei, Qu Sijian. Research progress on automatic coal maceral identification[J]. Coal Quality Technology, 2021, 36(1):49-57. | |
[5] | 王培珍, 殷子睆, 王高, 等. 一种基于PCA与RBF-SVM的煤岩显微组分镜质组分类方法[J]. 煤炭学报, 2017, 42(4):977-984. |
Wang Peizhen, Yin Zihuan, Wang Gao, et al. A classification method of vitrinite for coal macerals based on the PCA and RBF-SVM[J]. Journal of China Coal Society, 2017, 42(4):977-984. | |
[6] | 王培珍, 任将, 杜存铃, 等. 基于Tamura纹理特征的煤岩壳质组显微组分分类[J]. 安徽工业大学学报(自然科学版), 2018, 35(2):131-136. |
Wang Peizhen, Ren Jiang, Du Cunling, et al. Classification of macerals in exinite of coal based on Tamura features[J]. Journal of Anhui University of Technology(Natural Science), 2018, 35(2):131-136. | |
[7] | 王培珍, 翟羽佳, 王慧, 等. 基于曲波变换和压缩感知的煤岩惰质组分类[J]. 中国矿业大学学报, 2019, 48(5):1119-1125. |
Wang Peizhen, Zhai Yujia, Wang Hui, et al. Classification for inertinite of coal based on curvelet transform and compressive sensing[J]. Journal of China University of Mining & Technology, 2019, 48(5):1119-1125. | |
[8] |
Wang H, Lei M, Li M, et al. Intelligent estimation of vitrinite reflectance of coal from photomicrographs based on machine learning[J]. Energies, 2019, 12(20):3855-3855.
doi: 10.3390/en12203855 |
[9] | 王洪栋. 基于机器学习的煤岩显微图像分析研究[D]. 徐州: 中国矿业大学, 2019. |
Wang Hongdong. Research on photomicrograph analysis of coal based on machine learning[D]. Xuzhou: China University of Mining and Technology, 2019. | |
[10] | 宋孝忠. 煤岩显微图像假边界对显微组分组自动识别的影响[J]. 煤田地质与勘探, 2019, 47(6):45-50. |
Song Xiaozhong. Effect of false boundary of microscopic image on automatic identification of maceral group[J]. Coal Geology & Exploration, 2019, 47(6):45-50. | |
[11] | 宋孝忠, 张群. 煤岩显微组分组图像自动识别系统与关键技术[J]. 煤炭学报, 2019, 44(10):3085-3097. |
Song Xiaozhong, Zhang Qun. Automatic image recognition system and key technologies of maceral group[J]. Journal of China Coal Society, 2019, 44(10):3085-3097. | |
[12] | 宋孝忠. 烟煤显微组分组图像自动识别技术研究及应用[D]. 北京: 煤炭科学研究总院, 2020. |
Song Xiaozhong. Research and application of automatic image recognition technology for maceral groups in bituminous coal[D]. Beijing: China Coal Research Institute, 2020. | |
[13] | 邹丹平, 冯涛, 李咸伟, 等. 基于EM的直方图逼近及其应用[J]. 中国图象图形学报, 2005, 10(11):1458-1461. |
Zou Danping, Feng Tao, Li Xianwei, et al. Histogram approximation based on expectation maximization and its application[J]. Journal of Image and Graphics, 2005, 10(11):1458-1461. | |
[14] |
O'Brien G, Jenkins B, Esterle J, et al. Coal characterisation by automated coal petrography[J]. Fuel, 2003, 82(9):1067-1073.
doi: 10.1016/S0016-2361(02)00428-3 |
[15] | 闫超, 孙占全, 田恩刚, 等. 基于深度学习的医学图像分割技术研究进展[J]. 电子科技, 2021, 34(2):7-11. |
Yan Chao, Sun Zhanquan, Tian Engang, et al. Research progress of medical image segmentation based on deep learning[J]. Electronic Science and Technology, 2021, 34(2):7-11. | |
[16] | 刘婕梅. 基于卷积神经网络的煤岩壳质组显微图像多组分识别[D]. 马鞍山: 安徽工业大学, 2019. |
Liu Jiemei. CNN based multi-component recognition of coal exinite microscopic image[D]. Ma'anshan: Anhui University of Technology, 2019. | |
[17] | 吴德忠, 刘泉声, 黄兴, 等. 基于边界跟踪和神经网络的煤岩界面识别方法研究[J]. 煤炭工程, 2021, 53(6):140-146. |
Wu Dezhong, Liu Quansheng, Huang Xing, et al. Coal-rock interface recognition method based on boundary tracking algorithm and artificial neural network[J]. Coal Engineering, 2021, 53(6):140-146. | |
[18] | 王越, 白向飞, 张宇宏, 等. 煤岩自动测试系统图像灰度与反射率关系研究[J]. 煤炭转化, 2014, 37(2):25-27. |
Wang Yue, Bai Xiangfei, Zhang Yuhong, et al. Relationship between gray value of images and reflectance in automatic coal petrography[J]. Coal Conversion, 2014, 37(2):25-27. | |
[19] | 陈洪博, 白向飞, 李振涛, 等. 图像法测定煤岩组分反射率工作曲线的建立与应用[J]. 煤炭学报, 2014, 39(3):562-567. |
Chen Hongbo, Bai Xiangfei, Li Zhentao, et al. Working curve establishing and application of determining maceral reflectance by image analysis method[J]. Journal of China Coal Society, 2014, 39(3):562-567. | |
[20] | 贺佳, 史永林, 李昊堃, 等. 炼焦煤镜质体反射率及其分布图辨识与分析[J]. 中国冶金, 2021, 31(6):45-53. |
He Jia, Shi Yonglin, Li Haokun, et al. Identification and analysis of vitrinite reflectance and its distribution of coking coal[J]. China Metallurgy, 2021, 31(6):45-53. | |
[21] | 袁小翠, 黄志开, 马永力, 等. Otsu阈值分割法特点及其应用分析[J]. 南昌工程学院学报, 2019, 38(1):85-90. |
Yuan Xiaocui, Huang Zhikai, Ma Yongli, et al. Analysis of characteristics and application of Otsu threshold method[J]. Journal of Nanchang Institute of Technology, 2019, 38(1):85-90. | |
[22] | 李凯勇. 基于数据挖掘的图像特征分割技术[J]. 现代电子技术, 2020, 43(15):60-64. |
Li Kaiyong. Image feature segmentation technology based on data mining[J]. Modern Electronics Technique, 2020, 43(15):60-64. |
[1] | CHENG Shunda,CHENG Ying,SUN Shijiang. Tumor Intelligent Auxiliary Diagnosis Method Based on Machine Learning [J]. Electronic Science and Technology, 2022, 35(5): 56-59. |
[2] | JIN Xiao,WU Fei,YAN Song,LU Wenxia,ZHANG Zhongyi. Fingerprint Location Method of Metro Station Based on GAWK-means [J]. Electronic Science and Technology, 2022, 35(2): 34-39. |
[3] | DUAN Jundong,HUANG Hongye,WANG Shuaiqiang. EV Clustering Optimization Community Load Strategy Based on Flexible Optimization Mechanism [J]. Electronic Science and Technology, 2022, 35(12): 64-71. |
[4] | FANG Kai,SHI Zhicai,JIA Yuanyuan. K-Anonymity Data Publishing Algorithm Based on Hybrid Clustering [J]. Electronic Science and Technology, 2022, 35(12): 78-83. |
[5] | LIN Jing,HU Demin,WANG Kuihao. Differential Privacy Fuzzy Clustering Location Protection Method [J]. Electronic Science and Technology, 2022, 35(11): 64-71. |
[6] | XU Hangfan,LIU Cong,TANG Jiangang,PENG Dunlu. Accelerated Spectral Clustering Based on Improved Landmark Selection [J]. Electronic Science and Technology, 2021, 34(5): 47-53. |
[7] | ZHANG Tianhao,LI Haolin. A Method of Laser Center Extraction Based on Gaussian Fitting [J]. Electronic Science and Technology, 2020, 33(5): 72-76. |
[8] | YANG Shanshan,ZHANG Daxing,GUO Jiawei,WANG Shitiao. Copy-move Detection Algorithm Combining Keypoints and Block Advantages [J]. Electronic Science and Technology, 2020, 33(3): 38-43. |
[9] | MIAO Ran,LI Feifei,CHEN Qiu. Scene Recognition Algorithm Based on Convolutional Neural Networks and Multi-Scale space Encoding [J]. Electronic Science and Technology, 2020, 33(12): 54-58. |
[10] | LAN Jiman. Design of Data Mining System Based on Cloud Computing [J]. Electronic Science and Technology, 2019, 32(8): 70-74. |
[11] | ZHANG Changqing,YANG Nan. Design of Real-time Road Condition Detection System Based on Big Data Analysis of Vehicle Network [J]. Electronic Science and Technology, 2019, 32(8): 66-70. |
[12] | SUN Zhen,WANG Kai,WANG Yagang. A Modified Routing Algorithm Based on Time Competition Clustering [J]. Electronic Science and Technology, 2019, 32(8): 27-32. |
[13] | LI Qi,ZHANG Xin,ZHANG Pingkang,ZHANG Hang. Improved CFSFDP Algorithm Based on Spark Framework [J]. Electronic Science and Technology, 2019, 32(5): 38-44. |
[14] | ZHANG Yurun,WU Fei,MAO Wankui. Indoor Location Algorithm Based on WiFi-geomagnetism [J]. Electronic Science and Technology, 2019, 32(5): 49-54. |
[15] | WANG Kang,WU Chunxue. A Busy Coefficient Based on Dual Cluster Head Algorithm of Adaptive WSN for Energy Consumption Optimization [J]. Electronic Science and Technology, 2019, 32(2): 56-60. |
|