Electronic Science and Technology ›› 2023, Vol. 36 ›› Issue (4): 52-58.doi: 10.16180/j.cnki.issn1007-7820.2023.04.007
Previous Articles Next Articles
TONG Zhaojing,QIAO Zhengrui,LI Jinxiang,LAN Mengyue,JING Lifei
Received:
2021-10-22
Online:
2023-04-15
Published:
2023-04-21
Supported by:
CLC Number:
TONG Zhaojing,QIAO Zhengrui,LI Jinxiang,LAN Mengyue,JING Lifei. Research on Transformer Fault Diagnosis Based on Improved Sparrow Search Algorithm Optimization BN[J].Electronic Science and Technology, 2023, 36(4): 52-58.
Table 1.
Partial transformer fault data"
故障类型 | H2 /μL·L-1 | CH4 /μL·L-1 | C2H6 /μL·L-1 | C2H4 /μL·L-1 | C2H2 /μL·L-1 |
---|---|---|---|---|---|
低温过热 | 19.24 | 110.00 | 181.08 | 3.38 | 0.33 |
中温过热 | 72.00 | 442.00 | 221.00 | 461.00 | 0.70 |
高温过热 | 63.40 | 121.16 | 35.73 | 183.74 | 0.23 |
局部放电 | 2 437.00 | 115.50 | 0.20 | 3.50 | 22.60 |
低能放电 | 3.80 | 0.51 | 0.09 | 0.60 | 3.68 |
高能放电 | 41.60 | 25.10 | 206.00 | 15.70 | 124.00 |
正常 | 7.50 | 5.70 | 3.40 | 2.60 | 3.20 |
[1] |
Fanchiang K H, Huang Y C, Kuo C C. Power electric transformer fault diagnosis based on infrared thermal images using wasserstein generative adversarial networks and deep learning classifier[J]. Electronics, 2021, 10(10):1161-1162.
doi: 10.3390/electronics10101161 |
[2] |
Zhou Y C, Yang X H, Tao L Y, et al. Transformer fault diagnosis model based on improved gray wolf optimizer and probabilistic neural network[J]. Energies, 2021, 14(11):3029-3030.
doi: 10.3390/en14113029 |
[3] | Zhang H R, Sun J X, Hou K N, et al. Improved informion entropy weighted vague support vector machine method for transformer fault diagnosis[J]. High Voltage, 2021, 33(19):1-13. |
[4] | 任双赞, 徐尧宇, 李元, 等. 应用于油中溶解气体分析的深度信念网络与典型神经网络对比研究[J]. 高压电器, 2020, 56(9):39-45. |
Ren Shuangzan, Xu Yaoyu, Li Yuan, et al. Comparison studies of deep belief network and typical neural network applied to analysis of dissolved gas in oil[J]. High Voltage Apparatus, 2020, 56(9):39-45. | |
[5] | 陈里里, 何颖, 董绍江. 基于深度神经网络的液压泵泄漏状态识别[J]. 仪器仪表学报, 2020, 41(4):86-94. |
Chen Lili, He Ying, Dong Shaojiang. Recognition of h-ydraulic pump leakage status based on deep neural network[J]. Chinese Journal of Scientific Instrument, 2020, 41(4):86-94. | |
[6] | 杨宇, 曾国辉, 黄勃. 基于人工鱼群算法和LS_SVM的变压器故障诊断[J]. 电子科技, 2020, 33(11):36-40. |
Yang Yu, Zeng Guohui, Huang Bo. A transformer fault diagnosis method integrating artificial fish swarm algorithm with least square support vector machine[J]. Electronic Science and Technology, 2020, 33(11):36-40. | |
[7] | 李恩文, 王力农, 宋斌, 等. 基于改进模糊聚类算法的变压器油色谱分析[J]. 电工技术学报, 2018, 33(19):4594-4602. |
Li Enwen, Wang Linong, Song Bin, et al. Analysis of transformer oil chromatography based on improved fuzzy clustering algorithm[J]. Transactions of China Electrotechnical Society, 2018, 33(19):4594-4602. | |
[8] | 林晓宁, 蔡金锭. 基于粗糙集理论的变压器油纸绝缘状态评估[J]. 电力系统保护与控制, 2019, 47(7):22-29. |
Lin Xiaoning, Cai Jinding. Evaluation of transformer oil-paper insulation based on rough set theory[J]. Power System Protection and Control, 2019, 47(7):22-29. | |
[9] | 李黄曼, 张勇, 张瑶. 基于ISSA优化SVM的变压器故障诊断研究[J]. 电子测量与仪器学报, 2021, 35(3):123-129. |
Li Huangman, Zhang Yong, Zhang Yao. Study of transformer fault diagnosis based on improved sparrow search algorithm optimized support vector machine[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(3):123-129. | |
[10] | 赵文清, 严海, 周震东, 等. 基于残差BP神经网络的变压器故障诊断[J]. 电力自动化设备, 2020, 40(2):143-148. |
Zhao Wenqing, Yan Hai, Zhou Zhendong, et al. Fault diagnosis of transformer based on residual BP neural network[J]. Electric Power Automation Equipment, 2020, 40(2):143-148. | |
[11] | 宋玉琴, 赵洋, 李超, 等. 基于模糊关系与自组织竞争网络的变压器故障诊断[J]. 自动化技术与应用, 2016, 35(10):131-134. |
Song Yuqin, Zhao Yang, Li Chao, et al. Transformer fault diagnosis based on fuzzy relations and self-organizing competitive network[J]. Techniques of Automationand Applications, 2016, 35(10):131-134. | |
[12] | 吴杰康, 覃炜梅, 梁浩浩, 等. 基于自适应极限学习机的变压器故障识别方法[J]. 电力自动化设备, 2019, 39(10):181-186. |
Wu Jiekang, Qin Weimei, Liang Haohao, et al. Transformer fault identification method based on self-adaptive extreme learning machine[J]. Electric Power Automation Equipment, 2019, 39(10):181-186. | |
[13] | 刘彬, 刘永记, 刘浩然, 等. 基于贝叶斯改进结构算法的回转窑故障诊断模型研究[J]. 中国机械工程, 2017, 28(18):2143-2151. |
Liu Bin, Liu Yongji, Liu Haoran, et al. A study of fault diagnosis model of rotary kiln based on improved structural algorithm of Bayesian[J]. China Mechanical Engineering, 2017, 28(18):2143-2151. | |
[14] | 仝兆景, 秦紫霓, 赵运星, 等. 基于贝叶斯网络的变压器故障诊断研究[J]. 电子科技, 2021, 34(3):43-47. |
Tong Zhaojing, Qin Zini, Zhao Yunxing, et al. Research on transformer fault diagnosis based on Bayesian network[J]. Electronic Science and Technology, 2021, 34(3):43-47. | |
[15] | 白翠粉, 高文胜, 金雷, 等. 基于3层贝叶斯网络的变压器综合故障诊断[J]. 高电压技术, 2013, 39(2):330-335. |
Bai Cuifen, Gao Wensheng, Jin Lei, et al. Integrated diagnosis of transformer faults based on three-layer Bayesian network[J]. High Voltage Engineering, 2013, 39(2):330-335. | |
[16] | 吕启深, 曾辉雄, 姚森敬, 等. 基于贝叶斯网络和粗糙集约简的变压器故障诊断[J]. 中国电力, 2013, 46(9):75-79. |
Lü Qishen, Zeng Huixiong, Yao Senjing, et al. Transformer fault diagnosis based on Bayesian network and rough set reduction theory[J]. Electric Power, 2013, 46(9):75-79. | |
[17] | 王金鑫, 王忠巍, 马修真, 等. 基于贝叶斯网络的柴油机润滑系统多故障诊断[J]. 控制与决策, 2019, 34(6):1187-1194. |
Wang Jinxin, Wang Zhongwei, Ma Xiuzhen, et al. Diagnosis of multiple faults of diesel engine lubrication system based on Bayesian networks[J]. Control and Decision, 2019, 34(6):1187-1194. | |
[18] | 张娜, 赵泽丹, 包晓安, 等. 基于改进的Tent混沌万有引力搜索算法[J]. 控制与决策, 2020, 35(4):893-900. |
Zhang Na, Zhao Zedan, Bao Xiaoan, et al. Gravitational search algorithm based on improved Tent chaos[J]. Control and Decision, 2020, 35(4):893-900. | |
[19] | Xue J K, Shen B. A novel swarm intelligence optimization approach: Sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1):22-34. |
[20] | 李本锌. 智能算法在油浸式变压器故障诊断中的应用研究[D]. 南昌: 华东交通大学, 2015. |
Li Benxin. Application research of oil-immersed transformer fault diagnosis based on intelligent algorithms[D]. Nanchang: East China Jiaotong University, 2015. | |
[21] | 尹金良. 基于相关向量机的油浸式电力变压器故障诊断方法研究[D]. 北京: 华北电力大学, 2013. |
Yin Jinliang. Study on oil-immersed power transformer fault diagnosis based on relevance vector machine[D]. Beijing: North China Electric Power University, 2013. |
[1] | HUANG Yajing,LIAO Aihua,YU Miao,LI Xiaolong,HU Dingyu. An Improved CNN Method for Bearing Acoustic Fault Diagnosis [J]. Electronic Science and Technology, 2023, 36(1): 75-80. |
[2] | LIU Han,WANG Wanxiong. Short-Term Power Demand Forecasting Based on SARIMA-GS-SVR Combined Model [J]. Electronic Science and Technology, 2022, 35(8): 58-65. |
[3] | ZENG Zhijiang,GAO Guanbin,MA Wenjin. A Multi-Point Calibration Method of Articulated Arm Coordinate Measuring Machine [J]. Electronic Science and Technology, 2022, 35(8): 73-78. |
[4] | ZHENG Zheng,JIANG Pengfei,ZHANG Guopeng,LI Zihan. Comparison of Coordinated Control between Front and Rear Stages of Isolated AC-DC Solid-State Transformers [J]. Electronic Science and Technology, 2022, 35(7): 79-86. |
[5] | DING Huihui,SHAO Tingting,QIAO Xi. Research on Azimuth Error Compensation Based on BP Neural Network at Small-Angle Deviation [J]. Electronic Science and Technology, 2022, 35(5): 33-37. |
[6] | Hongjun SAN,Wanglin WANG,Jiupeng CHEN,Feiya XIE,Yangyang XU,Jia CHEN. VSLAM for Indoor Dynamic Scenes [J]. Electronic Science and Technology, 2022, 35(4): 14-19. |
[7] | LI Hui,WANG Yicheng. CNNCIFG-Attention Model for Text Sentiment Classifcation [J]. Electronic Science and Technology, 2022, 35(2): 46-51. |
[8] | YANG Yunhui,XU Lianjiang. Summary of Finite Element Analysis Technology for High Precision Machining [J]. Electronic Science and Technology, 2022, 35(11): 98-103. |
[9] | MENG Xiaojiao,ZHANG Shiwei,LI Xiaojian,LI Minyue,SONG Bingxin,LU Hongmin. An Evaluation Method of Vehicle-Mounted Communication Equipment Performance Based on BP Neural Network [J]. Electronic Science and Technology, 2021, 34(5): 24-28. |
[10] | ZHANG Jiapeng,LI Lin,ZHU Ye. A Review of Research on Decision-Making Method of Autonomous Vehicle Based on Reinforcement Learning [J]. Electronic Science and Technology, 2021, 34(5): 66-71. |
[11] | WANG Yumei,YANG Wenliang. Research on Dynamic Reconfiguration of Distribution Network with DG Based on Game Theory [J]. Electronic Science and Technology, 2021, 34(4): 52-58. |
[12] | YAN Shuhao,QIAO Meiying. Bearing Fault Diagnosis Algorithm Based on One-Dimensional WConv-BiLSTM [J]. Electronic Science and Technology, 2021, 34(4): 75-82. |
[13] | TONG Zhaojing,QIN Zini,ZHAO Yunxing,LU Tong,ZHENG Quan. Research on Transformer Fault Diagnosis Based on Bayesian Network [J]. Electronic Science and Technology, 2021, 34(3): 43-47. |
[14] | GAO Shang,YAO Lei,LI Yang,LI Ruixin. Control Parameter Optimization of Cascaded H-Bridge Power Electronic Transformer [J]. Electronic Science and Technology, 2021, 34(11): 75-80. |
[15] | WANG Yumei,LI Yaowei. Research on Flexible Switching Controller Based on UPFC [J]. Electronic Science and Technology, 2021, 34(11): 55-61. |
|