[1] |
Rabah A, Abdelhafid K, Azeddine B , et al. Rolling bearing fault diagnosis based on an improved denoising method using the complete ensemble empirical mode decomposition and the optimized thresholding operation[J]. IEEE Sensors Journal, 2018,18(17):7166-7172.
|
[2] |
王建国, 陈帅, 张超. 噪声参数最优ELMD与LS-SVM在轴承故障诊断中的应用与研究[J]. 振动与冲击, 2017,36(5):72-78,86.
|
|
Wang Jianguo, Chen Shuai, Zhang Chao. Application of noise parametric optimization with ELMD and LS-SVM in bearing fault diagnosis[J]. Journal of Vibration & Shock, 2017,36(5):72-78,86.
|
[3] |
余忠潇, 郝如江. 基于小波包和LCD的滚动轴承故障诊断[J]. 组合机床与自动化加工技术, 2019(10):120-123.
|
|
Xu Zhongxiao, Hao Rujiang. Application of bearing fault diagnosis based on wavelet packet and LCD[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2019(10):120-123.
|
[4] |
向丹, 岑健. 基于EMD熵特征融合的滚动轴承故障诊断方法[J]. 航空动力学报, 2015,30(5):1149-1155.
|
|
Xiang Dan, Cen Jian. Method of roller bearing fault diagnosis based on feature fusion of EMD entropy[J]. Journal of Aerospace Power, 2015,30(5):1149-1155.
|
[5] |
昝涛, 庞兆亮, 王民 , 等. 基于VMD的滚动轴承早期故障诊断方法[J]. 北京工业大学学报, 2019,45(2):103-110.
|
|
Zan Tao, Pang Zhaoliang, Wang Min , et al. Early fault diagnosis method of rolling bearings based on VMD[J]. Journal of Beijing University of Technology, 2019,45(2):103-110.
|
[6] |
Sheng L, Yue S, Lanyong Z. A novel fault diagnosis method based on noise-assisted MEMD and functional neural fuzzy network for rolling element bearings[J]. IEEE Access, 2018(6):27048-27068.
|
[7] |
王新, 闫文源. 基于变分模态分解和SVM的滚动轴承故障诊断[J]. 振动与冲击, 2017,36(18):252-256.
|
|
Wang Xin, Yan Wenyuan. Fault diagnosis of roller bearings based on the variational mode decomposition and SVM[J]. Journal of Vibration & Shock, 2017,36(18):252-256.
|
[8] |
Liu R N, Yang B Y , et al. Artificial intelligence for fault diagnosis of rotating machinery:A review[J]. Mechanical Systems and Signal Processing, 2018,10(8):33-47.
|
[9] |
梁蒙蒙, 周涛, 夏勇 , 等. 基于随机化融合和CNN的多模态肺部肿瘤图像识别[J]. 南京大学学报(自然科学), 2018,54(4):775-785.
|
|
Liang Mengmeng, Zhou Tao, Xia Yong , et al. Multimodal lung tumor image recognition based on randomized fusion and CNN[J]. Journal of Nanjing University (Natural Science), 2018,54(4):775-785.
|
[10] |
王纪军, 靖慧, 冯曙明 , 等. 基于Faster R-CNN的仓库视频监控目标检测方法研究[J]. 信息技术, 2019,43(7):92-96.
|
|
Wang Jijun, Jing Hui, Feng Shuming , et al. Object detection method of video monitoring in power warehouse based on Faster R-CNN[J]. Information Technology, 2019,43(7):92-96.
|
[11] |
Zhang W, Zhang F, Chen W , et al. Fault state recognition of rolling bearing based fully convolutional network[J]. Computing in Science & Engineering, 2018,21(5):55-63.
|
[12] |
Zhang W, Peng G L, Li C , et al. A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J]. Sensors, 2017,17(2):425-433.
|
[13] |
胡晓依, 荆云建, 宋志坤 , 等. 基于CNN-SVM的深度卷积神经网络轴承故障识别研究[J]. 振动与冲击, 2019,38(18):173-178.
|
|
Hu Xiaoyi, Jing Yunjian, Song Zhikun , et al. Bearing fault identification by using deep convolution neural networks based on CNN-SVM[J]. Journal of Vibration and Shock, 2019,38(18):173-178.
|
[14] |
李恒, 张氢, 秦仙蓉 , 等. 基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J]. 振动与冲击, 2018,37(19):124-131.
|
|
Li Heng, Zhang Qing, Qin Xianrong , et al. Fault diagnosis method for rolling bearings based on short-time Fourier transform and convolution neural network[J]. Journal of Vibration and Shock, 2018,37(19):124-131.
|
[15] |
李业良, 张二华, 唐振民. 基于混合式注意力机制的语音识别研究[J]. 计算机应用研究, 2020,37(1):131-134.
|
|
Li Yeliang, Zhang Erhua, Tang Zhenmin. Research on speech recognition based on hybrid attention mechanism[J]. Application Research of Comporters, 2020,37(1):131-134.
|
[16] |
张悦, 胡春燕. 基于有记忆递归神经网络的脑电特征情感识别研究[J]. 电子科技, 2020,33(11):67-72.
|
|
Zhang Yue, Hu Chunyan. Research on emotion recognition of EEG features based on the long short-term memory neural network[J]. Electronic Science and Technology, 2020,33(11):67-72.
|
[17] |
Yildirim Ô. A novel wavelet sequences based on deep bidirectional LSTM network model for ECG signal classification[J]. Computers in Biology & Medicine, 2018,19(6):189-202.
|