Electronic Science and Technology ›› 2019, Vol. 32 ›› Issue (9): 42-46.doi: 10.16180/j.cnki.issn1007-7820.2019.09.009
Previous Articles Next Articles
ZHOU Wenkai,HAN Fang,KONG Weijian
Received:
2018-09-12
Online:
2019-09-15
Published:
2019-09-19
Supported by:
CLC Number:
ZHOU Wenkai,HAN Fang,KONG Weijian. Point-selective Geetest CAPTCHA Recognition Based on Faster-RCNN[J].Electronic Science and Technology, 2019, 32(9): 42-46.
[1] | 胡健, 柳青, 王海林 . 验证码安全与验证码绕过技术[J]. 计算机应用, 2016,36(S1):37-41 |
Hu Jian, Liu Qing, Wang Hailin . CAPTCHA security and bypass technique[J]. Journal of Computer Applications, 2016,36(S1):37-41. | |
[2] | 孟凯 . 基于SVM的空心验证码识别技术研究[D]. 重庆:重庆邮电大学, 2017. |
Meng Kai . Research on recognition technology of hollow CHPTCHAs based on SVM[D]. Chongqing: Chongqing University of Posts and Telecommunication, 2017. | |
[3] | 王斌君, 王靖亚, 杜凯选 . 验证码技术的攻防对策研究[J]. 计算机应用研究, 2013,30(9):2777-2779. |
Wang Binjun, Wang Jingya, Du Kaixuan . Research on attach strategy of CHPTCHA technology[J]. Application Research of Computers, 2013,30(9):2777-2779. | |
[4] | 汪中 . 验证码识别技术及应用[J]. 计算机光盘软件与应用, 2014,17(5):167-168. |
Wang Zhong . CHPTCHA recognition technology and application[J]. Computer CD Software and Application, 2014,17(5):167-168. | |
[5] | 尹龙 . 扭曲粘连字符验证码识别研究[D]. 合肥:中国科学技术大学, 2014. |
Yin Long . Recognition of distorted and merged text-based CHPTCHA[D]. Hefei:University of Science and Technology of China, 2014. | |
[6] | 安改换 . 扭曲粘连字符验证码识别技术研究[D]. 上海:上海应用技术大学, 2016. |
An Gaihuan . Recognition technology research of distorted and merged text-based CHPTCHA[D]. Shanghai:Shanghai Institution of Technology, 2016. | |
[7] | 唐海涛 . 自组织增量神经网络的验证码识别模型与算法[D]. 广州:广东工业大学, 2016. |
Lu P, Shan L, Li J , et al. A new segmentation method for connected characters in CAPTCHA[C].Changshu:International Conference on Control, Automation and Information Sciences ( ICCAIS), 2015. | |
[9] | 汪洋, 许映秋, 彭艳兵 . 基于KNN技术的校内网验证码识别[J].计算机与现代化, 2017(2):93-97. |
Wang Yang, Xu Yingqiu, Peng Yanbing . KNN-based verification code recognition on campus network[J]. Computer and Modernization, 2017(2):93-97. | |
[10] | Wang Ye, Lu Mi. A self-adaptive algorithm to defeat text-based CAPTCHA [C].Taipei:IEEE International Confer-ence on Industrial Technology, 2016. |
[11] | Garg G, Pollett C . Neural network CAPTCHA crackers[C].San Francisco:Future Technologies Conference (FTC), 2016. |
[12] | 刘达荣, 张远平, 汤茂斌 , 等. 基于渐进式学习的神经网络端到端验证码识别[J].计算机技术与发展, 2018(9):9-13. |
Liu Darong, Zhang Yuanping, Tang Maobin , et al. End-to-end verification code identification of neural network based on progressive learning[J].Computer Technology and Development, 2018(9):9-13. | |
[13] | 熊海朋, 陈洋洋, 陈春玮 . 基于卷积神经网络的场景图像文本定位研究[J]. 电子科技, 2018,31(1):50-53. |
Xiong Haipeng, Chen Yangyang, Chen Chunyu . Text location in image based on convolutional neural network[J]. Electronic Science and Technology, 2018,31(1):50-53. | |
[14] | Ren S, Girshick R . Faster R-CNN:towards real-time objection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017,39(6):1137-1149. |
[15] | Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition [C].San Diego:International Conference on Learning Representations, 2015. |
[16] | Li Q, An W, Zhou A , et al. Recognition of offline handwritten Chinese characters using the tesseract open source OCR engine[C].Hangzhou:8 th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2016. |
[1] | LI Hui,WANG Yicheng. CNNCIFG-Attention Model for Text Sentiment Classifcation [J]. Electronic Science and Technology, 2022, 35(2): 46-51. |
[2] | ZHAN Yinwei,ZHU Baiwan,YANG Zhuo. Research and Application of Vehicle Face Recognition Algorithm [J]. Electronic Science and Technology, 2021, 34(8): 1-7. |
[3] | LIAO Luming,ZHANG Wei. Batch Mixed Training Traffic Sign Recognition Based on Improved VGG16 Network [J]. Electronic Science and Technology, 2021, 34(8): 8-13. |
[4] | GU Wei,LI Feifei,CHEN Qiu. Pedestrian Detection Algorithm Based on Multiple Feature Fusion [J]. Electronic Science and Technology, 2021, 34(5): 29-34. |
[5] | XUE Yongjie,JU Zhiyong. Fish Recognition Algorithm Based on Improved AlexNet [J]. Electronic Science and Technology, 2021, 34(4): 12-17. |
[6] | ZHANG Can,CHEN Wei,YIN Zhong. Semantic Segmentation of Cervical Cell Image Based on Weak Supervision [J]. Electronic Science and Technology, 2021, 34(12): 68-74. |
[7] | ZHANG Ying,LIU Zilong,WAN Wei. UAV Vehicle Target Detection Based on Faster R-CNN [J]. Electronic Science and Technology, 2021, 34(11): 11-20. |
[8] | LI Cheng,LIU Hao,JIANG Xifeng,WU Junfa,HAN Wengang,GAO Jianguo. Intelligent Diagnosis Algorithm of Generator Stator and Rotor Based on VGG Network [J]. Electronic Science and Technology, 2021, 34(11): 62-66. |
[9] | ZHANG Xiang,SHI Zhicai,CHEN Liang. Expression Recognition Method Based on Cascade Network Optimized by SWA [J]. Electronic Science and Technology, 2020, 33(9): 16-20. |
[10] | LU Chaowen,LI Feifei,CHEN Qiu. An Image Retrieval Algorithm Based on Improved Hashing Method [J]. Electronic Science and Technology, 2020, 33(5): 28-32. |
[11] | SI Qin,LI Feifei,CHEN Qiu. Face Recognition Algorithm Based on Deep Learning and Feature Fusion [J]. Electronic Science and Technology, 2020, 33(4): 18-22. |
[12] | CHENG Junhua,ZENG Guohui,LIU Jin. Research on Complex Background Image Classification Method Based on Deep Learning [J]. Electronic Science and Technology, 2020, 33(12): 59-66. |
[13] | MIAO Ran,LI Feifei,CHEN Qiu. Scene Recognition Algorithm Based on Convolutional Neural Networks and Multi-Scale space Encoding [J]. Electronic Science and Technology, 2020, 33(12): 54-58. |
[14] | HU Shaocong. Research on Face Recognition Based on Deep Learning [J]. Electronic Science and Technology, 2019, 32(6): 82-86. |
[15] | HU Demin,CHENG Pufang. An Improved LeNet Network [J]. Electronic Science and Technology, 2019, 32(3): 53-57. |
|