Electronic Science and Technology ›› 2022, Vol. 35 ›› Issue (3): 51-57.doi: 10.16180/j.cnki.issn1007-7820.2022.03.008
Previous Articles Next Articles
Yanmei YANG,Zongmao CHENG
Received:
2020-10-23
Online:
2022-03-15
Published:
2022-04-02
Supported by:
CLC Number:
Yanmei YANG,Zongmao CHENG. Prediction of PM2.5 Based on External Influences and Time-Series Factors[J].Electronic Science and Technology, 2022, 35(3): 51-57.
[1] | 胡彬, 陈瑞, 徐建勋, 等. 雾霾超细颗粒物的健康效应[J]. 科学通报, 2015,60(30):2808-2823. |
Hu Bin, Chen Rui, Xu Jianxun, et al. Health effects of ambient ultrafine(nano) particles in haze[J]. Chinese Science Bulletin, 2015,60(30):2808-2823. | |
[2] | 权建农, 徐祥德, 贾星灿, 等. 影响我国霾天气的多尺度过程[J]. 科学通报, 2020,65(9):810-824. |
Quan Jiannong, Xu Xiangde, Jia Xingcan, et al. Multi-scale processes in severe haze events in China and their interactions with aerosols: mechanisms and progresses[J]. Chinese Science Bulletin, 2020,65(9):810-824. | |
[3] | 李波, 朱恩文, 冯倩. 基于时间序列的长沙市PM2.5的统计分析[J]. 经济数学, 2017,34(1):105-110. |
Li Bo, Zhu Enwen, Feng Qian. Statistical analysis of changsha PM2.5 based on time series[J]. Journal of Quantitative Economics, 2017,34(1):105-110. | |
[4] | 戴邵武, 陈强强, 刘志豪, 等. 基于EMD-LSTM 的时间序列预测方法[J]. 深圳大学学报(理工版), 2020,37(3):265-270. |
Dai Shaowu, Chen Qiangqiang, Liu Zhihao, et al. Time series prediction based on EMD-LSTM model[J]. Journal of Shenzhen University(Science and Engineering), 2020,37(3):265-270. | |
[5] | 康俊峰, 黄烈星, 张春艳, 等. 多机器学习模型下逐小时PM2.5预测及对比分析[J]. 中国环境科学, 2020,40(5):1895-1905. |
Kang Junfeng, Huang Liexing, ZhangChunyan,et al.Hourly PM2.5 prediction and its comparative analysis under multimachine learning model[J]. China Environmental Science, 2020,40(5):1895-1905. | |
[6] | 蒋奇峰, 杜景林, 周芸. 一种基于QPSO-RBF模型预测PM2.5浓度值的方法研究及应用[J]. 计算机应用与软件, 2020,37(9):202-208. |
Jiang Qifeng, Du Jinglin, Zhou Yun. A method for predicting PM2.5 concentration based on QPSO-RBF model and its application[J]. Computer Applications and Software, 2020,37(9):202-208. | |
[7] | 管胜, 阮方鸣, 周奎, 等. BP神经网络预测电极速度影响放电参数分析[J]. 电子科技, 2019,32(6):43-48. |
Guan Sheng, Ruan Fangming, Zhou Kui, et al. Analysis of discharge parameters affected by BP neural network predicting electrode velocity[J]. Electronic Science and Technology, 2019,32(6):43-48. | |
[8] | Wu Z H, Huang N E. Ensemble empirical mode decomposition: a noise assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009,1(1):1-41. |
[9] | Liu Y M, Zhao C C, Xiong M Y, et al. Assessment of bearing performance degradation via extension and EEMD combined approach[J]. Journal of Central South University, 2017,24(5):1155-1163. |
[10] | Xu P P, Chen C J, Lou H F. Research on the method of EEMD in pulse wave signals prcessing[J]. Chinese Journal of Biomedical Engineering, 2018,27(3):100-108. |
[11] | Xiao Y, Tian X T. Tourism traffic demand prediction using Google trends based on EEMD-DBN[J]. Engineering, 2020,12(3):194-215. |
[12] | 曲悦, 钱旭, 宋洪庆, 等. 基于机器学习的北京市PM2.5浓度预测模型及模拟分析[J]. 工程科学学报, 2019,41(3):401-407. |
Qu Yue, Qian Xu, Song Hongqing, et al. Machine-learning- based model and simulation analysis of PM2.5concentration prediction in Beijing[J]. Chinese Journal of Engineering, 2019,41(3):401-407. | |
[13] | 尹光花, 刘小明, 张露, 等. 基于LSTM特征模板的短文本情感要素分析与研究[J]. 电子科技, 2018,31(11):38-41. |
Yin Guanghua, Liu Xiaoming, Zhang Lu, et al. Sentiment elements of internet short texts for analysis and research based on LSTM network mode[J]. Electronic Science and Technology, 2018,31(11):38-41. | |
[14] | Zhang B N. Foreign exchange rates forecasting with an EMD-LSTM neural networks model[J]. Journal of Physics Conference, 2018,1053(1):5-12. |
[15] | 陈振宇, 刘金波, 李晨, 等. 基于LSTM与XGBoost组合模型的超短期电力负荷预测[J]. 电网技术, 2020,44(2):614-620. |
Chen Zhenyu, Liu Jinbo, Li Chen, et al. Ultra short-term power load forecasting based on combined LSTM-XGBoost model[J]. Power System Technology, 2020,44(2):614-620. | |
[16] | 董健卫, 陈艳美, 孟盼, 等. 回归分析与基于MIV的RBF神经网络在PM2.5的相关因素分析中的应用[J]. 数学的实践与认识, 2017,47(10):127-136. |
Dong Jianwei, Chen Yanmei, Meng Pan, et al. The application of regression analysis and RBF neural network based on MIV in the related factors analysis of PM2.5[J]. Mathematics in Practice and Theory, 2017,47(10):127-136. | |
[17] | 陈川, 陈冬林, 何李凯, 等. 基于BPNN-EMD-LSTM 组合模型的城市短期燃气负荷预测[J]. 安全与环境工程, 2019,26(1):149-154. |
Chen Chuan, Chen Donglin, He Likai, et al. Short-term forecast of urban natural gas load based on BPNN-EMD-LSTM combined model[J]. Safety and Environmental Engineering, 2019,26(1):149-154. | |
[18] | 曾浩, 丁镭. 长江经济带城市雾霾污染PM2.5时空格局演变及影响因素研究[J]. 华中师范大学学报(自然科学版), 2019,53(5):724-734. |
Zeng Hao, Ding Lei. Study on spatial-temporal pattern evolution and influencing factors of urban haze pollution PM2.5 in the Yangtze river economic belt[J]. Journal of Central China Normal University(Natural Sciences), 2019,53(5):724-734. | |
[19] | 石昊苏, 方丽娟, 台志强, 等. 一种基于Retinex的雾霾图像增强改进算法[J]. 电子设计工程, 2018,26(4):180-183. |
Shi Haosu, Fang Lijuan, Tai Zhiqiang, et al. An improved haze image enhancement algorithm based on Retinex[J]. Electronic Design Engineering, 2018,26(4):180-183. |
[1] | Chaowei LIN,Feifei LI,Qiu CHEN. Globaland Local Scene Representation Method Based on Deep Convolutional Features [J]. Electronic Science and Technology, 2022, 35(4): 20-27. |
[2] | Li HUA,Jian YANG,Tianchen YUAN,Ruigang SONG. Track Disease Diagnosis Method Based on VMD and BP Neural Network [J]. Electronic Science and Technology, 2022, 35(4): 40-46. |
[3] | Jinxian YANG,Yuxin HAN,Pengwei LIU. Drift Processing of Gyro While Drilling Based on Synaptic Plasticity Pulsed Neural Network [J]. Electronic Science and Technology, 2022, 35(4): 60-66. |
[4] | Lingyu JI,Yongbin GAO,Chenglu ZHAO,Xianhua TANG,Kaicheng XU,Jiacheng XU. CTA Segmentation Algorithm of Abdominal Artery Based on 3D Fully Convolutional Network [J]. Electronic Science and Technology, 2022, 35(3): 38-44. |
[5] | Hui LI,Hao JING,Kanghua YAN,Lianghao XU. Speech Enhancement Method Based on Convolutional Recurrent Network and Non-Local Module [J]. Electronic Science and Technology, 2022, 35(3): 8-15. |
[6] | CHU Ping,NI Wei. Design of FPGA-Based SqueezeNet Inference Accelerator [J]. Electronic Science and Technology, 2022, 35(2): 20-26. |
[7] | LI Hui,WANG Yicheng. CNNCIFG-Attention Model for Text Sentiment Classifcation [J]. Electronic Science and Technology, 2022, 35(2): 46-51. |
[8] | LU Wei,LIU Xiang,XUE Mian. Siamese Network Binocular Stereo Matching Based on Super-Pixel Segmentation [J]. Electronic Science and Technology, 2021, 34(9): 73-78. |
[9] | ZHAN Yinwei,ZHU Baiwan,YANG Zhuo. Research and Application of Vehicle Face Recognition Algorithm [J]. Electronic Science and Technology, 2021, 34(8): 1-7. |
[10] | LIAO Luming,ZHANG Wei. Batch Mixed Training Traffic Sign Recognition Based on Improved VGG16 Network [J]. Electronic Science and Technology, 2021, 34(8): 8-13. |
[11] | SI Mingming,CHEN Wei,HU Chunyan,YIN Zhong. Fundus Blood Vessel Image Segmentation Combining Resnet50 and U-Net [J]. Electronic Science and Technology, 2021, 34(8): 19-24. |
[12] | GU Wei,LI Feifei,CHEN Qiu. Pedestrian Detection Algorithm Based on Multiple Feature Fusion [J]. Electronic Science and Technology, 2021, 34(5): 29-34. |
[13] | MENG Xiaojiao,ZHANG Shiwei,LI Xiaojian,LI Minyue,SONG Bingxin,LU Hongmin. An Evaluation Method of Vehicle-Mounted Communication Equipment Performance Based on BP Neural Network [J]. Electronic Science and Technology, 2021, 34(5): 24-28. |
[14] | ZHANG Shisen,SUN Xiankun,YIN Ling,LI Shixi. Design of Text Title Generation Prototype System Based on Neural Network [J]. Electronic Science and Technology, 2021, 34(5): 35-41. |
[15] | XUE Yongjie,JU Zhiyong. Fish Recognition Algorithm Based on Improved AlexNet [J]. Electronic Science and Technology, 2021, 34(4): 12-17. |
|