Electronic Science and Technology ›› 2023, Vol. 36 ›› Issue (5): 55-61.doi: 10.16180/j.cnki.issn1007-7820.2023.05.009
Previous Articles Next Articles
ZHENG Yuheng,FU Dongxiang
Received:
2021-11-26
Online:
2023-05-15
Published:
2023-05-17
Supported by:
CLC Number:
ZHENG Yuheng,FU Dongxiang. UAV Detection Based on Slim-YOLOv4 with Embedded Device[J].Electronic Science and Technology, 2023, 36(5): 55-61.
Table 1.
Ghostnet network structure"
输入 | 操作 | 扩张通道 | 输出通道 | SE | 步长 |
---|---|---|---|---|---|
224×224×3 | Conv2d 3×3 | - | 16 | - | 2 |
112×112×16 | G-bneck | 16 | 16 | - | 1 |
112×112×16 | G-bneck | 48 | 24 | - | 2 |
56×56×24 | G-bneck | 72 | 24 | - | 1 |
56×56×24 | G-bneck | 72 | 40 | 1 | 2 |
28×28×40 | G-bneck | 120 | 40 | 1 | 1 |
28×28×40 | G-bneck | 240 | 80 | - | 2 |
14×14×80 | G-bneck | 200 | 80 | - | 1 |
14×14×80 | G-bneck | 184 | 80 | - | 1 |
14×14×80 | G-bneck | 184 | 80 | - | 1 |
14×14×80 | G-bneck | 480 | 112 | 1 | 1 |
14×14×112 | G-bneck | 672 | 112 | 1 | 1 |
14×14×112 | G-bneck | 672 | 160 | 1 | 2 |
7×7×160 | G-bneck | 960 | 160 | - | 1 |
7×7×160 | G-bneck | 960 | 160 | 1 | 1 |
7×7×160 | G-bneck | 960 | 160 | - | 1 |
7×7×160 | G-bneck | 960 | 160 | 1 | 1 |
7×7×160 | Conv2d 1×1 | - | 960 | - | 1 |
7×7×960 | AvgPool 7×7 | - | - | - | - |
1×1×960 | Conv2d 1×1 | - | 1 280 | - | 1 |
1×1×1 280 | FC | - | 1 000 | - | - |
Table 5.
Comparison of detection accuracy in VOC data set /%"
类别 | Faster R-CNN | YOLOV4 | Slim-YOLOv4 |
---|---|---|---|
Cat | 98.2 | 97.6 | 96.3 |
Person | 90.3 | 93.2 | 90.8 |
Aero | 95.3 | 98.5 | 97.8 |
Car | 88.4 | 92.6 | 90.0 |
Bus | 97.2 | 97.9 | 94.4 |
Dog | 95.6 | 96.2 | 95.5 |
Motorbike | 92.1 | 94.5 | 90.6 |
Train | 98.5 | 98.7 | 96.0 |
Horse | 92.8 | 96.5 | 93.6 |
Table | 70.8 | 86.3 | 83.0 |
Sheep | 83.9 | 88.4 | 86.4 |
Tv | 83.3 | 94.6 | 90.9 |
Boat | 86.9 | 91.2 | 86.4 |
Chair | 79.6 | 90.6 | 86.9 |
Bird | 93.2 | 97.4 | 92.3 |
Bicycle | 90.8 | 93.6 | 87.8 |
Bottle | 72.4 | 80.3 | 78.8 |
Sofa | 88.8 | 94.8 | 88.6 |
Plant | 74.7 | 79.8 | 76.8 |
Cow | 98.6 | 98.1 | 95.3 |
mAP/% | 88.6 | 93.0 | 89.9 |
[1] | Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector[C]. Amsterdam: Proceedings of the European Conference on Computer Vision, 2016:21-37. |
[2] | Molchanov P, Mallya A, Tyree S, et al. Importance estimation for neural network pruning[C]. Long Beach: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 11264-11272. |
[3] |
Chen Z, Zhang L, Cao Z, et al. Distilling the knowledge from handcrafted features for human activity recognition[J]. IEEE Transactions on Industrial Informatics, 2018, 14(10):4334-4342.
doi: 10.1109/TII.2018.2789925 |
[4] | Yin P H, Zhang S, Qi Y, et al. Quantization and training of low bit-width convolutional neural networks for object detection[J]. Mathematica Numerica Sinica, 2019, 37(3):349-359. |
[5] |
Lee H J, Ullah I, Wan W, et al. Real-time vehicle make and model recognition with the residual SqueezeNet architecture[J]. Sensors, 2019, 19(5):982-997.
doi: 10.3390/s19050982 |
[6] | Howard A, Sandler M, Chu G, et al. Searching for mobilenetv3[C]. Long Beach: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019:1314-1324. |
[7] | Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]. Salt Lake City: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:6848-6856. |
[8] | Han K, Wang Y, Tian Q, et al. GhostNet: More features from cheap operations[C]. Seattle: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020:1580-1589. |
[9] | Li Y, Lü C. SS-YOLO: An object detection algorithm based on YOLOv3 and ShuffleNet[C]. Chongqing: Proceedings of the IEEE Fourth Information Technology, Networking, Electronic and Automation Control Conference, 2020:769-772. |
[10] | Farhadi A, Redmon J. YOLOv3: An incremental improvement[C]. Berlin: Proceedings of the Computer Vision and Pattern Recognition, 2018:1-12 |
[11] | 冯媛, 李敬兆. 改进的卷积神经网络行人检测方法[J]. 计算机工程与设计, 2020, 41(5):1452-1457. |
Feng Yuan, Li Jingzhao. Improved convolutional neural network pedestrian detection method[J]. Computer Engineering and Design, 2020, 41(5):1452-1457. | |
[12] | 靳丽蕾, 杨文柱, 王思乐, 等. 一种用于卷积神经网络压缩的混合剪枝方法[J]. 小型微型计算机系统, 2018, 39(12):2596-2601. |
Jin Lilei, Yang Wenzhu, Wang Sile, et al. A hybrid pruning method for convolutional neural network compression[J]. Small Microcomputer Systems, 2018, 39(12):2596-2601. | |
[13] | 成凌飞, 贺扬, 张培玲, 等. 压缩深层神经网络隐藏层维度对其分类性能的影响[J]. 电子科技, 2019, 32(1):72-75. |
Cheng Lingfei, He Yang, Zhang Peiling, et al. Effect of hidden layer dimension on classification performance of compressed deep neural network[J]. Electronic Science and Technology, 2019, 32(1):72-75. | |
[14] | 邵伟平, 王兴, 曹昭睿, 等. 基于MobileNet与YOLOv3的轻量化卷积神经网络设计[J]. 计算机应用, 2020, 40(S1):8-13. |
Shao Weiping, Wang Xing, Cao Zhaorui, et al. Design of lightweight convolutional neural network based on MobileNet and YOLOv3[J]. Computer Applications, 2020, 40(S1):8-13. | |
[15] | Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: Optimal speed and accuracy of object detection[C]. Seattle: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020:1-10. |
[16] | Chollet F. Xception: Deep learning with depthwise separable convolutions[C]. Holunono: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:1251-1258. |
[17] | Devi T, Deepa N. A novel intervention method for aspect-based emotion using exponential linear unit activation function in a deep neural network[C]. Madurai: Proceedings of the Fifth International Conference on Intelligent Computing and Control Systems, 2021: 1671-1675. |
[18] | Wang C Y, Liao H Y M, Wu Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN[C]. Seattle: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020:390-391. |
[19] | Wang K, Liew J H, Zou Y, et al. Panet: Few-shot image semantic segmentation with prototype alignment[C]. Long Beach: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019:9197-9206. |
[20] | He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Las Vegas: Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:770-778. |
[1] | LIU Yuwei,CAO Min,FENG Haojia. CNAS Recognition Criteria Automatic Benchmarking System Based on Natural Language Processing [J]. Electronic Science and Technology, 2023, 36(5): 28-33. |
[2] | SHI Jianke,QIAO Meiying,LI Bingfeng,ZHAO Yan. Underwater Occlusion Target Detection Algorithm Based on Attention Mechanism [J]. Electronic Science and Technology, 2023, 36(5): 62-70. |
[3] | LUO Ruipeng,FENG Mingke,HUANG Xin,ZOU Renling,LI Dan. A Review of Research on EEG Signal Preprocessing Methods [J]. Electronic Science and Technology, 2023, 36(4): 36-43. |
[4] | CUI Zhuodong,CHEN Wei,YIN Zhong. Helmet Wearing Detection Based on Enhanced Feature Fusion Network [J]. Electronic Science and Technology, 2023, 36(4): 44-51. |
[5] | BAI Yingqi,PALIDAN·Tuerxun . A Scientific Literature Recommendation Method Based on Multi-Task Learning [J]. Electronic Science and Technology, 2023, 36(4): 59-64. |
[6] | TANG Zheng,ZHANG Huilin,MA Lixin,LIU Jinzhi,WANG Hao. Identification of Foreign Objects on Transmission Lines Using Lightweight Network Algorithm [J]. Electronic Science and Technology, 2023, 36(4): 71-77. |
[7] | LU Dongxiang. Research Progress of Node Assignment Optimization Strategy in Road Traffic Network [J]. Electronic Science and Technology, 2023, 36(3): 81-86. |
[8] | ZUO Bin,LI Feifei. An Effective Segmentation Method for COVID-19 CT Image Based on Attention Mechanism and Inf-Net [J]. Electronic Science and Technology, 2023, 36(2): 22-28. |
[9] | ZHAO Wenjun,ZHAI Han,ZHANG Hongyan. Total Variation and Sparsity Regularized Deep Nonnegative Matrix Factorization for Hyperspectral Unmixing [J]. Electronic Science and Technology, 2023, 36(2): 53-60. |
[10] | YU Qiongfang,NIU Dongyang. Mixed Prediction of Mine Pressure Time and Space Based on LSTM Network [J]. Electronic Science and Technology, 2023, 36(2): 67-72. |
[11] | CHENG Changwen,CHEN Wei,CHEN Jinhong,YIN Zhong. YOLO-Improve Detection Method of Real-Time Mask Wearing [J]. Electronic Science and Technology, 2023, 36(2): 73-80. |
[12] | WU Tong,YU Lianzhi. The Recommendation Algorithm of Extreme Deep Factorization Machine Merged with Attention Network [J]. Electronic Science and Technology, 2023, 36(1): 38-43. |
[13] | BI Jiazhen,SHEN Tuo,ZHANG Xuanxiong. A Research on Distance Measurement Between Trains in Rail Transit Based on Machine Vision [J]. Electronic Science and Technology, 2022, 35(9): 37-43. |
[14] | ZHANG Qiaomu,ZHONG Qianwen,SUN Ming,LUO Wencheng,CHAI Xiaodong. Research on Dynamic Monitoring Method of Pantograph-Net Contact Position in Complex Environment [J]. Electronic Science and Technology, 2022, 35(8): 66-72. |
[15] | ZHAO Xuan,ZHOU Fan,YU Hancheng. Improved YOLOv3 Model Based on New Feature Extraction and Fusion Module [J]. Electronic Science and Technology, 2022, 35(7): 40-45. |
|