Electronic Science and Technology ›› 2023, Vol. 36 ›› Issue (5): 71-79.doi: 10.16180/j.cnki.issn1007-7820.2023.05.011
Previous Articles Next Articles
ZHANG Jinghao1,ZHANG Xuanxiong1,Christian Wolf2,Michael Wick2
Received:
2021-12-17
Online:
2023-05-15
Published:
2023-05-17
Supported by:
CLC Number:
ZHANG Jinghao,ZHANG Xuanxiong,Christian Wolf,Michael Wick. Study on the Characteristics of Ignition Discharge of A Small Penning Ion Source by Increasing Magnetic Field[J].Electronic Science and Technology, 2023, 36(5): 71-79.
[1] | Rovey J L, Ruzic B P, Houlahan T J. Simple penning ion source for laboratory research and development applications[J]. Review of Scientific Instruments, 2007, 78(10):1-3. |
[2] |
Das B K, Shyam A, Das R, et al. Development of hollow anode penning ion source for laboratory application[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 669:19-21.
doi: 10.1016/j.nima.2011.12.030 |
[3] | Wolf B. Handbook of ion sources[M]. London: CRC Press, 1995:35-89. |
[4] | Mamedov N V, Gubarev A V, Zverev V I, et al. Magnetic field design for miniature pulse Penning ion source[J]. Plasma Sources Science and Technology, 2020, 29(2):9-24. |
[5] | Hooper Jr E B. A review of reflex and penning discharges[J]. Advances in Electronics and Electron Physics, 1970(27):295-343. |
[6] |
Wang J. Simulation of gas discharge in tube and paschen’s law[J]. Optics and Photonics Journal, 2013, 3(2):313-317.
doi: 10.4236/opj.2013.32B073 |
[7] |
Mamedov N V, Maslennikov S P, Presnyakov Y K, et al. Penning ion source discharge modes for pulsed and continuous power supplies[J]. Technical Physics, 2019, 64(9):1290-1297.
doi: 10.1134/S1063784219090081 |
[8] |
Schuurman W. Investigation of a low pressure penning discharge[J]. Physica, 1967, 36(1):136-160.
doi: 10.1016/0031-8914(67)90086-9 |
[9] |
Mamedov N V, Schitov N N, Lobok M G, et al. The penning discharge experimental study and its simulation[J]. Plasma Physics and Technology, 2016, 3(3):158-162.
doi: 10.14311/ppt.2016.3.158 |
[10] |
Surzhikov S T. The two-dimensional structure of the Penning discharge in a cylindrical chamber with axial magnetic field at a pressure of about 1 torr[J]. Technical Physics Letters, 2017, 43(2):169-172.
doi: 10.1134/S1063785017020122 |
[11] |
Mamedov N V, Shchitov N N, Kolodko D V, et al. Discharge characteristics of the penning plasma source[J]. Technical Physics, 2018, 63(8):1129-1136.
doi: 10.1134/S1063784218080121 |
[12] |
Hirsch E H. On the mechanism of the Penning discharge[J]. British Journal of Applied Physics, 1964, 15(12): 1535-1543.
doi: 10.1088/0508-3443/15/12/314 |
[13] | Yang Z, Dong P, Long J D, et al. The study of discharge characteristic of the cold-cathode negative hydrogen PIG-type ion source[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 68(5):29-34. |
[14] | Carlsson J, Kaganovich I, Powis A, et al. Particle-in-cell simulations of anomalous transport in a Penning discharge[J]. Physics of Plasmas, 2018, 25(6):1-12. |
[15] | Phelps A V, Petrovic Z L. Cold-cathode discharges and breakdown in argon: Surface and gas phase production of secondary electrons[J]. Plasma Sources Science and Technology, 1999, 8(3):21-44. |
[16] |
Mamedov N V, Maslennikov S P, Solodovnikov A A, et al. Effect of the magnetic field on the characteristics of a pulsed Penning ion source[J]. Plasma Physics Reports, 2020, 46(2):217-229.
doi: 10.1134/S1063780X20020063 |
[17] | Küchler A. High voltage engineering: Fundamentals-technology-applications[M]. Schweinfurt:Springer, 2017:56-98. |
[18] | Chen F F. Introduction to plasma physics[M]. New York: Springer Science & Business Media, 2012:45-98. |
[19] | Fathi A, Feghhi S A H, Sadati S M, et al. Magnetic field design for a Penning ion source for a 200 keV electrostatic accelerator[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 85(3):1-6. |
[1] | WU Fuzhuan,XIANG Naihuang,ZHOU Yuanhao,CHEN Mengna. PI Approximate Engineering Design of DC-DC Conversion Compensation Network [J]. Electronic Science and Technology, 2023, 36(5): 16-22. |
[2] | BIAN Dapeng,WANG Yeting,PENG Yaxin,TANG Haoquan. Research on the Index Strategy of Deck Operation Station Selection Based on Simulation Optimization [J]. Electronic Science and Technology, 2023, 36(5): 88-94. |
[3] | TANG Zenan,MIAO Xiaodan,YANG Jian,YUAN Tianchen. Research on Low Mach Number Transitional Cavity Jet Noise Reduction of High-Speed Train Pantograph [J]. Electronic Science and Technology, 2023, 36(4): 29-35. |
[4] | XIA Zihao,LI Yudong. Research on Control Strategy of Single-Phase Grid-Connected Inverter Based on dSPACE [J]. Electronic Science and Technology, 2023, 36(3): 62-68. |
[5] | SUN Sinan,HAO Zhenghang. Research on Battery Grid Connection Based on Voltage and Current Double Loop Control [J]. Electronic Science and Technology, 2023, 36(2): 13-21. |
[6] | LIU Meihong,HONG Enhang,LI Zhenhua,TENG Baoren. Study on Wire Arc Additive Manufacturing Forming Based on Image Processing and Numerical Simulation [J]. Electronic Science and Technology, 2023, 36(1): 7-14. |
[7] | SUN Sinan,HAO Zhenghang. Photovoltaic Grid-Connected System Based on Adaptive VSG Control [J]. Electronic Science and Technology, 2022, 35(9): 22-29. |
[8] | MING Can,MA Chunwei. Numerical Simulation and Thermal Cycle Analysis of MAG Welding Temperature Field Based on ABAQUS [J]. Electronic Science and Technology, 2022, 35(9): 74-78. |
[9] | Xiaojing YANG,Hongxiu YANG. Simulation of Dynamic Process of Micro-Cutting Single Crystal Germanium Based on SPH Method [J]. Electronic Science and Technology, 2022, 35(4): 67-71. |
[10] | Xinge SHEN,Hai JIN,Liang GUO. Research on Adaptive Backstepping Control of Quadrotor UAV [J]. Electronic Science and Technology, 2022, 35(3): 32-37. |
[11] | Xuanfeng SHANGGUAN,Tingyu YANG,Jinsong WEI,Yongjian LIU. Design Analysis and Modeling Simulation of Brushless DC Motor [J]. Electronic Science and Technology, 2022, 35(3): 71-78. |
[12] | LIU Jianlong,HAO Zhenghang. Comparative Study of Wind Power System Simulation Based on Back-to-Back Converters [J]. Electronic Science and Technology, 2022, 35(2): 67-73. |
[13] | YANG Yunhui,XU Lianjiang. Summary of Finite Element Analysis Technology for High Precision Machining [J]. Electronic Science and Technology, 2022, 35(11): 98-103. |
[14] | LI Gang. A Synthesis Method for Dual-Band Filters with Frequency Variant Couplings [J]. Electronic Science and Technology, 2022, 35(1): 1-5. |
[15] | YUAN Xianpu,MIAO Xiaodan,YANG Jian,YUAN Tianchen,YUAN Ding. Aerodynamic Noise Analysis for High-Speed Train’s Pantograph and Study on Noise Reduction of the Cavity of Pantograph [J]. Electronic Science and Technology, 2022, 35(1): 45-52. |
|