[1]SI X S,WANG W B,HU C H,et al.Remaining useful life estimation-A review on the statistical data driven approaches[J].European Journal of Operational Research,2011,213(1):1-14.
[2]SANA B,GOEBEL K,CHRISTOPHERSEN J.Comparison of prognostic algorithms for estimating remaining useful life of batteries[J].Transactions on the Institute of Measurement and Control,2009,31(3):293-308.
[3]LE SON K,BARROS A,FOULADIRAD M.On the use of stochastic processes for RUL estimation:A case study[C].Reliability,Risk and Safety:Back to the Future,2010:1159-1166.
[4]GASPERIN M,JURICIC D,BOSKOSKI P.Prediction of the remaining useful life:an integrated framework for model estimation and failure prognostics[C].2012 IEEE Conference on Prognostics and Health Management (PHM),2012:1-8.
[5]YAN J H,GUO C Z,WANG X,et al.A Data-driven neural network approach for remaining useful life prediction[J].Key Engineering Materials,2011,450(1):544-547.
[6]邓自立.卡尔曼滤波与维纳滤波——现代时间序列分析方法[M].哈尔滨:哈尔滨工业大学出版社,2001.
[7]邓自立.最优滤波理论及其应用—现代时间序列分析方法[M].哈尔滨:哈尔滨工业大学出版社,2000.
[8]何书元.应用时间序列分析[M].北京:北京大学出版社,2003.
[9]曹晋华,程侃.可靠性数学引论[M].北京:高等教育出版社,2006.
[10]司小胜,胡昌华,周东华.带测量误差的非线性退化过程建模与剩余寿命估计[J].自动化学报,2012,38(1):1471-1484.
[11]MARCOS E O.A particle filtering-based framework for on-line fault diagnosis and failure prognosis[M].Georgia:Georgia Institute of Technology,2007.
[12]FENG T L,ZHAO J M.Remaining useful life prediction based on nonlinear stste space model[C].Prognostics & System Health Management Conference,2011. |