[1] |
Host M, Johansson C . Evaluation of code review methods through interviews and experimentation[J]. Journal of Systems and Software, 2000,52(2-3):113-120.
|
[2] |
Bacchelli A, Bird C. Expectations, outcomes, and challenges of modern code review[C]. San Francisco: International Conference on Software Engineering, 2013.
|
[3] |
Rong G, Li J, Xie M, et al. The effect of checklist in code review for inexperienced students: an empirical study[C] .Nanjing:IEEE Conference on Software Engineering Education & Training,IEEE, 2012.
|
[4] |
Mcgraw G . Automated code review tools for security[J]. Computer, 2008,41(12):108-111.
|
[5] |
Remillard J . Source code review systems[J]. IEEE Software, 2005,22(1):74-77.
|
[6] |
Bosu A, Greiler M, Bird C. Characteristics of useful code reviews:an empirical study at Microsoft[C]. Florence: Mining Software Repositories, 2015.
|
[7] |
Greff K, Srivastava R K, Koutník J , et al. LSTM: a search space odyssey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017,28(10):2222-2232.
|
[8] |
Mcintosh S, Kamei Y, Adams B , et al. An empirical study of the impact of modern code review practices on software quality[J]. Empirical Software Engineering, 2016,21(5):2146-2189.
|
[9] |
Thongtanunam P, Kula R G, Cruz A E C, et al. Improving code review effectiveness through reviewer recommendations[C]. Hyderabad: International Workshop on Cooperative and Human Aspects of Software Engineering,ACM, 2014.
|
[10] |
Rahman M M, Roy C K, Kula R G. Predicting usefulness of code review comments using textual features and developer experience[C]. Buenos Aires:International Conference on Mining Software Repositories,IEEE, 2017.
|
[11] |
胡星, 王千祥 . 深度学习在缺陷修复者推荐中的应用[J]. 计算机科学与探索, 2017,11(5):700-707.
|
|
Hu Xing, Wang Qianxiang . Application of deep learning in recommendation of bug reports assignment[J]. Journal of Frontiers of Computer Science and Technology, 2017,11(5):700-707.
|
[12] |
Cherry J M, Adler C, Ball C , et al. SGD:saccharomyces genome database[J]. Nucleic Acids Research, 1998,26(1):73-79.
|
[13] |
Perozzi B, Al-Rfou’ R, Kulkarni V , et al. Inducing language networks from continuous space word representations[J]. Computer Science, 2014,549(1):261-273.
|
[14] |
Lecun Y, Bengio Y, Hinton G . Deep learning[J]. Nature, 2015,521(7553):436-439.
|
[15] |
Saul L K, Jaakkola T, Jordan M I . Mean field theory for sigmoid belief networks[J]. Journal of Artificial Intelligence Research, 1996,4(1):61-76.
|
[16] |
Levy O, Goldberg Y . Neural word embedding as implicit matrix factorization[J]. Advances in Neural Information Processing Systems, 2014(3):2177-2185
|
[17] |
Reimer, Paula J Baillie, , et al. INTCAL04 terrestrial radiocarbon age calibration,26-0 ka BP[J]. Radiocarbon, 2004,46(5):1029-1058.
|
[18] |
Memisevic R, Zach C, Hinton G, et al. Gated softmax classification[C]. Vancouver:Advances in Neural Information Processing Systems, 2010.
|
[19] |
Srivastava N, Hinton G, Krizhevsky A , et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014,15(1):1929-1958.
|
[20] |
Cassel M, Lima F. Evaluating one-hot encoding finite state machines for SEU reliability in SRAM-based FPGAs[C]. Lake of Como:IEEE International Symposium on On-Line Testing,IEEE, 2006.
|