Electronic Science and Technology ›› 2021, Vol. 34 ›› Issue (2): 7-11.doi: 10.16180/j.cnki.issn1007-7820.2021.02.002
Previous Articles Next Articles
YAN Chao,SUN Zhanquan,TIAN Engang,ZHAO Yangyang,FAN Xiaoyan
Received:
2019-12-03
Online:
2021-02-15
Published:
2021-01-22
Supported by:
CLC Number:
YAN Chao,SUN Zhanquan,TIAN Engang,ZHAO Yangyang,FAN Xiaoyan. Research Progress of Medical Image Segmentation Based on Deep Learning[J].Electronic Science and Technology, 2021, 34(2): 7-11.
Table 1
Deep learning segmentation network frameworks"
网络结构 | 功能特点 | 备注 |
---|---|---|
FCN[ | 密集性预测, 像素级分割 | 避免了因图像块重叠而导致的重复卷积计算 |
DeconvNet[ | 设计了多个反卷积层和反池化层网络 | 解决了原始FCN网络中的尺寸问题,使物体的细节信息更为详尽 |
DeepLab[ | 把卷积神经网络与传统概率图模型融合,并使用了空洞卷积。 | 在不进行池化的情况下扩大感受野,防止图像局部信息特征的丢失。 |
SegNet[ | 提出了最大值池化索引方法 | 池化过程中丢失的信息可以通过最大值索引在解码阶段得到 |
PSPNet[ | 提出金字塔模型提取图像多尺度信息特征 | 细节特征和全局特征的融合,极大地丰富了图像的语义信息。 |
U-net[ | 采用跳跃拼接的编解码网络结构进行特征融合 | 影响深远,U-net网络被广泛地应用和改进。 |
V-net[ | 采用3D 卷积和基于分割衡量指标DICE 系数作为目标函数 | 专为3D 医学图像分割而设计的改进版U-net网络 |
U-net++[ | 把U-net网络结构各层连在一起 | U-net网络结构的增强版本 |
CE-Net[ | 将密集空洞卷积和多尺度池化相结合 | 在多种医学图像分割任务上效果显著 |
[1] | 康晓东. 医学影像图像处理[M]. 北京: 人民卫生出版社, 2009. |
Kang Xiaodong. Medical image processing[M]. Beijing: People's Medical Publishing House, 2009. | |
[2] |
Mohammad H H, Jia W J, He X J, et al. Deep learning techniques for medical image segmentation: achievements and challenges[J]. Journal of Digital Imaging, 2019,32(4):582-596.
doi: 10.1007/s10278-019-00227-x pmid: 31144149 |
[3] | 刘宇, 陈胜. 医学图像分割方法综述[J]. 电子科技, 2017,30(8):169-172. |
Liu Yu, Chen Sheng. Review of medical image segmentation method[J]. Electronic Science and Technology, 2017,30(8):169-172. | |
[4] | Zhang L, Zhang Y. Big data analysis by infinite deep neural networks[J]. Journal of Computer Research and Development, 2016,53(1):68-79. |
[5] | Shen D G, Wu G R, Suk H I. Deep learning in medical image analysis[J]. Annual Review of Biomedical Engineering, 2017,19(5):221-248. |
[6] | He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition [C].Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. |
[7] | Prathiba M, Jose D, Saranya R, et al. Automated M-elanoma recognition in dermoscopy images via very deep residual networks [C].Coimbatore:Proceedings of the First International Conference on Materials Science and Manufacturing Technology, 2019. |
[8] |
Litjens G, Kooi T, Bejnordi B E, et al. A survey on deep learning in medical image analysis[J]. Medical Image Analysis, 2017,42(9):60-88.
doi: 10.1016/j.media.2017.07.005 |
[9] | 崔宝成. 浅析医学影像技术学-CT[J]. 世界最新医学信息文摘, 2015,15(72):111-112. |
Cui Baocheng. Analysis of medical imaging technology-CT[J]. World Latest Medical Information, 2015,15(72):111-112. | |
[10] |
Niessen W J. MR brain image analysis in dementia: from quantitative imaging biomarkers to ageing brain models and imaging genetics[J]. Medical Image Analysis, 2016,33(12):107-113.
doi: 10.1016/j.media.2016.06.029 |
[11] |
Shi J, Zhou S C, Liu X, et al. Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset[J]. Neurocomputing, 2016,194(23):87-94.
doi: 10.1016/j.neucom.2016.01.074 |
[12] | Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation [C].Boston:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015. |
[13] | Krizhevsky A, Sutskever I, Hinton G E. ImageNet C-lassification with deep convolutional neural networks [C]. Lake Tahoe:Proceedings of the International Conference on Neural Information Processing Systems, 2012. |
[14] | Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[J]. Medical Image Computing and Computer-Assisted Intervention,, 2015,9351(65):234-241. |
[15] | Milletari F, Navab N, Ahmadi S A. V-Net:fully convolutional neural networks for volumetric medical image segmentation [C].Palo Alto:Proceedings of the Fourth International Conference on 3D Vision, 2016. |
[16] | Zhou Z W, Tajbakhsh N, Liang J M. U-Net plus plus:a nested U-Net architecture for medical image segmentation[C].Granada:The Eighth International Workshop on Multimodal Learning for Clinical Decision Support (ML-CDS), 2018. |
[17] |
Gu Z W, Cheng J, Fu H Z, et al. CE-Net:context encoder network for 2D medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2019,38(10):2281-2292.
doi: 10.1109/TMI.2019.2903562 pmid: 30843824 |
[18] | Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation [C].Santiago:IEEE International Conference on Computer Vision, 2015. |
[19] | Chen L C, Papandreou G, Kokkinos I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018,40(12):834-848. |
[20] | Badrinarayanan V, Kendall A, Cipolla R. SegNet:a deep convolutional encoder decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(18):2481-2495. |
[21] |
He K M, Zhang X Y, Ren S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,37(9):1904-1916.
doi: 10.1109/TPAMI.2015.2389824 pmid: 26353135 |
[22] | Cui Z P, Yang J, Qiao Y. Brain MRI segmentation with patch-based CNN approach [C].Chengdu: Proceedings of the Thirty-fifth Chinese Control Conference, 2016. |
[23] |
Moeskops P, Viergever M A, Mendrik A M, et al. Automatic segmentation of MR brain images with a convolutional neural network[J]. IEEE Transactions on Medical Imaging, 2016,35(5):1252-1262.
doi: 10.1109/TMI.2016.2548501 pmid: 27046893 |
[24] | Zhang W L, Li R J, Deng H T, et al. Deep convolutional neural networks for multi-modality isointense infant brain image segmentation[J]. Neuro Image, 2015,108(25):214-224. |
[25] |
Nie D, Wang L, Lao C J, et al. 3-D fully convolutional networks for multimodal isointense infant brain image segmentation[J]. IEEE Transactions on Cybernetics, 2018,49(3):1123-1136.
doi: 10.1109/TCYB.2018.2797905 pmid: 29994385 |
[26] | Cheng J Z, Ni D, Chou Y H, et al. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans[J]. Scientific Reports, 2016,6(11):244-254. |
[27] | Liauchuk V, Kovalev V, Kalinovsky A, et al. Examining the ability of convolutional neural networks to detect lesions in lung CT images [C].Barcelona:Medical Imaging and Augmented Reality:Computer Assisted Radiology and Surgery, 2017. |
[28] | Zhou J H, Ginsberg M S, Metaxas D N, et al. Automatic detection and segmentation of ground glass opacity nodules [C].Heidelberg:Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention, 2006. |
[29] | Nasr E E, Samavi S, Karimi N, et al. Vessel extraction in X-ray angiograms using deep learning[C].Orlando: Proceedings of the Thirty-eighth International Conference of the Engineering in Medicine and Biology Society(EMBC), 2016. |
[30] | Wu A, Xu Z Y, Gao M C, et al. Deep vessel tracking: a generalized probabilistic approach via deep learning[C]. Prague:Proceedings of the Thirteenth International Symposium on Biomedical Imaging (ISBI), 2016. |
[31] |
Madabhushi A, Lee G. Image analysis and machine learning in digital pathology: challenges and opportunities[J]. Medical Image Analysis, 2016,33(6):170-175.
doi: 10.1016/j.media.2016.06.037 |
[32] |
Wang S L, Yin Y L, Cao G B, et al. Hierarchical retinal blood vessel segmentation based on feature and ensemble learning[J]. Neurocomputing, 2015,149(18):708-717.
doi: 10.1016/j.neucom.2014.07.059 |
[1] | CHU Ping,NI Wei. Design of FPGA-Based SqueezeNet Inference Accelerator [J]. Electronic Science and Technology, 2022, 35(2): 20-26. |
[2] | LI Hui,WANG Yicheng. CNNCIFG-Attention Model for Text Sentiment Classifcation [J]. Electronic Science and Technology, 2022, 35(2): 46-51. |
[3] | ZONG Shengkang,CHENG Jianpeng,ZHANG Xiliang. Automatic Detection Method of Crane Track Altitude Difference Based on Spot Position [J]. Electronic Science and Technology, 2022, 35(1): 21-28. |
[4] | CHENG Xiaoya,ZHANG Lei. Research on Occluded Face Recognition Method Based on Deep Learning [J]. Electronic Science and Technology, 2022, 35(1): 35-39. |
[5] | ZHAO Chong,CHI Mengmeng,CHU Cong,ZHANG Peng. Research on Motion Simulation and Visual Recognition Algorithm of Guide Dog Walking Mechanism [J]. Electronic Science and Technology, 2021, 34(9): 66-72. |
[6] | LU Wei,LIU Xiang,XUE Mian. Siamese Network Binocular Stereo Matching Based on Super-Pixel Segmentation [J]. Electronic Science and Technology, 2021, 34(9): 73-78. |
[7] | ZHAN Yinwei,ZHU Baiwan,YANG Zhuo. Research and Application of Vehicle Face Recognition Algorithm [J]. Electronic Science and Technology, 2021, 34(8): 1-7. |
[8] | LIAO Luming,ZHANG Wei. Batch Mixed Training Traffic Sign Recognition Based on Improved VGG16 Network [J]. Electronic Science and Technology, 2021, 34(8): 8-13. |
[9] | SI Mingming,CHEN Wei,HU Chunyan,YIN Zhong. Fundus Blood Vessel Image Segmentation Combining Resnet50 and U-Net [J]. Electronic Science and Technology, 2021, 34(8): 19-24. |
[10] | MA Lixin,DOU Chenfei,SONG Chencan,YANG Tianxiao. Insulator Nondestructive Testing Based on Feature Fusion CNN [J]. Electronic Science and Technology, 2021, 34(7): 26-30. |
[11] | GU Wei,LI Feifei,CHEN Qiu. Pedestrian Detection Algorithm Based on Multiple Feature Fusion [J]. Electronic Science and Technology, 2021, 34(5): 29-34. |
[12] | MENG Xiaojiao,ZHANG Shiwei,LI Xiaojian,LI Minyue,SONG Bingxin,LU Hongmin. An Evaluation Method of Vehicle-Mounted Communication Equipment Performance Based on BP Neural Network [J]. Electronic Science and Technology, 2021, 34(5): 24-28. |
[13] | ZHANG Shisen,SUN Xiankun,YIN Ling,LI Shixi. Design of Text Title Generation Prototype System Based on Neural Network [J]. Electronic Science and Technology, 2021, 34(5): 35-41. |
[14] | SONG Zhangming,HE Huiyong,HUANG Yuejun. Study on On-Line Detection of Surface Defects of Flat Enameled Wire [J]. Electronic Science and Technology, 2021, 34(5): 72-78. |
[15] | XUE Yongjie,JU Zhiyong. Fish Recognition Algorithm Based on Improved AlexNet [J]. Electronic Science and Technology, 2021, 34(4): 12-17. |
|