Electronic Science and Technology ›› 2023, Vol. 36 ›› Issue (9): 58-65.doi: 10.16180/j.cnki.issn1007-7820.2023.09.009
Previous Articles Next Articles
ZHANG Lijuan,ZHANG Sai,SHEN Jiamin,GU Xin
Received:
2022-04-29
Online:
2023-09-15
Published:
2023-09-18
Supported by:
CLC Number:
ZHANG Lijuan,ZHANG Sai,SHEN Jiamin,GU Xin. Design of Broadband Sound Transmission Structure Based on Gradient Fluid-Solid Superlattice[J].Electronic Science and Technology, 2023, 36(9): 58-65.
Figure 6.
Transmittance of GFSL structure when the sound wave is incident vertically (a~b)The number of solid layers on both sides is the same, but the change of filling fraction gradient is different (c~d)The gradient change of filling fraction of solid layers on both sides is the same, but the number of layers is different"
[1] | 袁贤浦, 苗晓丹, 杨俭, 等. 高速列车受电弓气动噪声分析与空腔降噪研究[J]. 电子科技, 2022, 35(1):45-52. |
Yuan Xianpu, Miao Xiaodan, Yang Jian, et al. Aerodynamic noise analysis for high-speed train's pantograph and study on noise reduction of the cavity of pantograph[J]. Electronic Science and Technology, 2022, 35(1):45-52. | |
[2] | 白锐, 徐达, 杨亮, 等. 高集成小型化中频滤波组件设计与实现[J]. 电子科技, 2022, 35(2):1-6. |
Bai Rui, Xu Da, Yang Liang, et al. Design and implementation of high integration and miniaturization if filter module[J]. Electronic Science and Technology, 2022, 35(2):1-6. | |
[3] | Wang Y T, Li J, Fu Y X, et al. Tunable guided waves in a soft phononic crystal with a line defect[J]. APL Materials, 2021, 9(5):1-7. |
[4] | Gkantzounis G, Amoah T, Florescu M. Hyperuniform disordered phononic structures[J]. Physical Review B, 2017, 95(9):1-11. |
[5] | 冯青松, 杨舟, 梁玉雄, 等. 长度调制的声子晶体梁弯曲振动带隙特性分析[J]. 噪声与振动控制, 2020, 40(4):1-8. |
Feng Qingsong, Yang Zhou, Liang Yuxiong, et al. Analysis of the bending vibration band gap characteristics of a length-adjustable phononic crystal beam[J]. Noise and Vibration Control, 2020, 40(4):1-8. | |
[6] | Allam A, Sabra K, Erturk A. 3D-printed gradient-index phononic crystal lens for underwater acoustic wave focusing[J]. Physical Review Applied, 2020, 13(6):1-7. |
[7] | Hyun J, Park C S, Chang J, et al. Gradient-index phononic crystals for omnidirectional acoustic wave focusing and energy harvesting[J]. Applied Physics Letters, 2020, 116(23):1-5. |
[8] |
卢一铭, 曹东兴, 申永军, 等. 局域共振型声子晶体板缺陷态带隙及其俘能特性研究[J]. 力学学报, 2021, 53(4):1114-1123.
doi: 10.6052/0459-1879-20-436 |
Lu Yiming, Cao Dongxing, Shen Yongjun, et al. Study on the bandgaps of defect states and application of energy harvesting of local resonant phononic[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4):1114-1123.
doi: 10.6052/0459-1879-20-436 |
|
[9] | Zhang X H, Qu Z G, Xu Y C. Enhanced sound absorption in two-dimensional continuously graded phononic crystals[J]. Japanese Journal of Applied Physics, 2019, 58(9):1-14. |
[10] |
Cao W W, Qi W K. Plane wave propagation in finite 2-2 composites[J]. Journal of Applied Physics, 1995, 78(7):4627-4632.
doi: 10.1063/1.360701 |
[11] | Lu W, Xu C G, Zhang S, et al. Low-frequency Gibbs-type oscillation in finite solid-fluid sonic crystals and its application in sub-wavelength wave isolation for waterborne sound[J]. Journal of Physics D: Applied Physics, 2019, 52(50):1-8. |
[12] | Li K, Liang B, Yang J, et al. Acoustic broadband metacouplers[J]. Applied Physics Letters, 2017, 110(20):1-5. |
[13] | Bai L, Dong H Y, Song G Y, et al. Impedance-matching wavefront-transformation lens based on acoustic metamaterials[J]. Advanced Materials Technologies, 2018, 3(11):1-6. |
[14] | Jia X, Li Y, Zhou Y H, et al. Wide bandwidth acoustic transmission via coiled-up metamaterial with impedance matching layers[J]. Science China Physics, Mechanics & Astronomy, 2019, 62(6):1-8. |
[15] | Li Y, Shen C, Xie Y B, et al. Tunable asymmetric transmission via lossy acoustic metasurfaces[J]. Physical Review Letters, 2017, 119(3):1-5. |
[16] | Dong E Q, Song Z C, Zhang Y, et al. Bioinspired metagel with broadband tunable impedance matching[J]. Science Advances, 2020, 6(44):1-9. |
[17] | Xu B Q, Wu J, Lu W, et al. Transmission and rainbow trapping of acoustic waves in a fluid medium using gradient-index superlattices[J]. Journal of Applied Physics, 2021, 129(15):1-10. |
[18] | Zhang S, Zhang Y, Gao X W, et al. Superwide-angle acoustic propagations above the critical angles of the Snell law in liquid-solid superlattice[J]. Chinese Physics B, 2014, 23(12):1-7. |
[19] | Zhang S, Xu B Q, Cao W W, et al. Controlling the angle range in acoustic low-frequency forbidden transmission in solid-fluid superlattice[J]. Journal of Applied Physics, 2018, 123(11):1-7. |
[20] | Zhang S, Zhang Y, Lu W, et al. Low-frequency forbidden bandgap engineering via a cascade of multiple 1D superlattices[J]. Journal of Applied Physics, 2018, 124(15):1-8. |
[1] | ZHOU Biao,ZHANG Shuai,ZHANG Dexun,LIN Zhicheng,WANG Jian. Design of Low Sidelobe W-Band Sparse Array Consists of Horn-Like Antenna [J]. Electronic Science and Technology, 2023, 36(9): 8-14. |
[2] | GU Xin,XU Baiqiang,XU Guidong,XU Chenguang,ZHANG Sai. Study of Lamb-Wave Complex Dispersion Relations for Plate Structures Based on Bloch-Floquent Theory and Finite Element Simulation [J]. Electronic Science and Technology, 2023, 36(8): 49-55. |
[3] | YUE Shengyao,XU Baiqiang,XU Guidong,XU Chenguang,ZHANG Sai. Super-Resolution Imaging of Laminate Debonding Defects via Deconvolutional Neural Network and Ultrasound Guided Waves [J]. Electronic Science and Technology, 2023, 36(8): 7-13. |
[4] | SUN Hong,ZHAO Yingzhi. Lightweight Generative Adversarial Networks Based on Multi-Scale Gradient [J]. Electronic Science and Technology, 2023, 36(7): 32-38. |
[5] | ZHAN Fei,YAN Yongmou. Design of A High Frequency Vehicle Small Loop Antenna with Auto-Tuning Characteristic [J]. Electronic Science and Technology, 2023, 36(6): 16-20. |
[6] | XU Tiantian,XI Zhihong. Face Recognition with Occlusion Based on Improved GD-HASLR Algorithm [J]. Electronic Science and Technology, 2023, 36(6): 72-79. |
[7] | BAI Xingyu,GOU Yutao,JIANG Yu,LIU Mingyu. An Acoustic Treatment Method for On-Line Fault Monitoring of Electromechanical Systems in Complex Noise Environment [J]. Electronic Science and Technology, 2023, 36(3): 55-61. |
[8] | ZHU Tuo,LI Zheng,ZHANG Kai,LI Zi. Optimal Design of Permanent Magnet Synchronous Machine Based on Analytic Model [J]. Electronic Science and Technology, 2023, 36(3): 69-75. |
[9] | YANG Yingying,LIU Xiang,SHI Yunyu. An Improved Obstacle Detection Method for AGV [J]. Electronic Science and Technology, 2022, 35(9): 1-6. |
[10] | WANG Ruixin,YAO Lei. Optimization Design of Air Gap Structure of Series Compensating Saturated Core Fault Current Limiter [J]. Electronic Science and Technology, 2022, 35(8): 21-26. |
[11] | WANG Peiyu,MA Lixin. Research on Permanent Magnet Synchronous Motor Servo System Based on Fuzzy Neural Network [J]. Electronic Science and Technology, 2022, 35(6): 83-88. |
[12] | DING Huihui,SHAO Tingting,QIAO Xi. Research on Azimuth Error Compensation Based on BP Neural Network at Small-Angle Deviation [J]. Electronic Science and Technology, 2022, 35(5): 33-37. |
[13] | Xuanfeng SHANGGUAN,Tingyu YANG,Jinsong WEI,Yongjian LIU. Design Analysis and Modeling Simulation of Brushless DC Motor [J]. Electronic Science and Technology, 2022, 35(3): 71-78. |
[14] | YANG Yunhui,XU Lianjiang. Summary of Finite Element Analysis Technology for High Precision Machining [J]. Electronic Science and Technology, 2022, 35(11): 98-103. |
[15] | ZUO Wencheng,ZHAO Ziwen,XU Zhijiang,TAN Kangbo. Analysis and Research of Electromagnetic Environment in Space Station Cabin Based on 5G Communication [J]. Electronic Science and Technology, 2022, 35(10): 1-7. |
|