Electronic Science and Technology ›› 2023, Vol. 36 ›› Issue (9): 35-40.doi: 10.16180/j.cnki.issn1007-7820.2023.09.006
Previous Articles Next Articles
Bin 1,2,WANG Sen1,2
Received:
2022-04-13
Online:
2023-09-15
Published:
2023-09-18
Supported by:
CLC Number:
Bin ,WANG Sen. Visual Detection of Structural Cracks Using Depth Deformable Contour ModelLAI[J].Electronic Science and Technology, 2023, 36(9): 35-40.
[1] | 伍旭东, 王勇, 王瑛. 基于深度主动学习的路面裂纹检测[J]. 信息与电脑, 2021, 33(7):76-80. |
Wu Xudong, Wang Yong, Wang Ying. Pavement crack detection based on deep active learning[J]. Information and Computer, 2021, 33(7):76-80. | |
[2] | 邓鑫, 刘桂华. 一种改进阈值分割的荧光磁粉裂纹提取算法[J]. 测控技术, 2020, 39(9):87-93. |
Deng Xin, Liu Guihua. An improved threshold segmentation algorithm for crack extraction of fluorescent magnetic particles[J]. Measurement and Control Technology, 2020, 39(9):87-93. | |
[3] | 梁放, 宋学, 肖颖, 等. 基于边缘检测的含缺陷岩石裂纹扩展分析[J]. 安徽建筑, 2019, 26(12):127-128. |
Liang Fang, Song Xue, Xiao Ying, et al. Analysis of crack propagation in defective rock based on edge detection[J]. Anhui Architecture, 2019, 26(12):127-128. | |
[4] | 崔洁. 基于随机森林的激光超声表面缺陷识别方法研究[D]. 太原: 中北大学, 2019:33-38. |
Cui Jie. Research on laser ultrasonic surface defect recognition method based on random forest[D]. Taiyuan: North Central University, 2019:33-38. | |
[5] | 夏翔, 宋逸君, 俞传富, 等. 基于BEMD和SVM的路面裂缝识别方法[J]. 电子器件, 2020, 43(1):224-228. |
Xia Xiang, Song Yijun, Yu Chuanfu, et al. Pavement crack identification method based on BEMD and SVM[J]. Electronic Devices, 2020, 43(1):224-228. | |
[6] |
Ye X W, Jin T, Chen P Y. Structural crack detection using deep learning-based fully convolutional networks[J]. Advances in Structural Engineering, 2019, 22(16):3412-3419.
doi: 10.1177/1369433219836292 |
[7] |
Lee D, Kim J, Lee D. Robust concrete crack detection using deep learning-based semantic segmentation[J]. International Journal of Aeronautical and Space Sciences, 2019, 20(1):287-299.
doi: 10.1007/s42405-018-0120-5 |
[8] | 张莹, 刘子龙, 万伟. 基于Faster R-CNN的无人机车辆目标检测[J]. 电子科技, 2021, 34(11):11-20. |
Zhang Ying, Liu Zilong, Wan Wei. UAV vehicle target detection based on Faster R-CNN[J]. Electronic Science and Technology, 2021, 34(11):11-20. | |
[9] | 刘继丹, 孙吉, 仲天舒, 等. 改进SSD卷积神经网络在钢板边裂纹检测中的应用[J]. 冶金自动化, 2020, 44(4): 43-47. |
Liu Jidan, Sun Ji, Zhong Tianshu, et al. Application of improved SSD convolutional neural network in steel plate edge crack detection[J]. Metallurgical Automation, 2020, 44(4):43-47. | |
[10] |
蔡逢煌, 张岳鑫, 黄捷. 基于YOLOv3与注意力机制的桥梁表面裂痕检测算法[J]. 模式识别与人工智能, 2020, 33(10):926-933.
doi: 10.16451/j.cnki.issn1003-6059.202010007 |
Cai Fenghuang, Zhang Yuexin, Huang Jie. Bridge surface crack detection algorithm based on YOLOv3 and attention mechanism[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(10):926-933.
doi: 10.16451/j.cnki.issn1003-6059.202010007 |
|
[11] | 李太文, 范昕炜. 基于Faster R-CNN的道路裂缝识别[J]. 电子技术应用, 2020, 46(7):53-56. |
Li Taiwen, Fan Xinwei. Road crack recognition based on Faster R-CNN[J]. Application of Electronic Technology, 2020, 46(7):53-56. | |
[12] | 王森, 伍星, 张印辉, 等. 基于深度学习的全卷积网络图像裂纹检测[J]. 计算机辅助设计与图形学学报, 2018, 30(5):859-867. |
Wang Sen, Wu Xing, Zhang Yinhui, et al. Full convolutional network image crack detection based on deep learning[J]. Journal of Computer Aided Design and Graphics, 2018, 30(5):859-867. | |
[13] | 陈波, 张华, 汪双, 等. 基于全卷积神经网络的坝面裂纹检测方法研究[J]. 水力发电学报, 2020, 39(7):52-60. |
Chen Bo, Zhang Hua, Wang Shuang, et al. Research on dam surface crack detection method based on fully convolutional neural network[J]. Journal of Hydroelectric Power Generation, 2020, 39(7):52-60. | |
[14] | 李画, 李明晶, 李凯, 等. Mask RCNN 模型在路面缺陷检测中的应用[J]. 科学技术创新, 2020(29):131-132. |
Li Hua, Li Mingjing, Li Kai, et al. Application of Mask RCNN model in pavement defect detection[J]. Science and Technology Innovation, 2020(29):131-132. | |
[15] |
章世祥, 张汉成, 李西芝, 等. 基于机器视觉的路面裂缝病害多目标识别研究[J]. 公路交通科技, 2021, 38(3):30-39.
doi: 10.3969/j.issn.1002-0268.2021.03.005 |
Zhang Shixiang, Zhang Hancheng, Li Xizhi, et al. Research on multitarget recognition of pavement cracks and diseases based on machine vision[J]. Highway Traffic Science and Technology, 2021, 38(3):30-39.
doi: 10.3969/j.issn.1002-0268.2021.03.005 |
|
[16] |
Zhang Q Q, Zhu Z J, Bai Y Q, et al. Distracted driving detection based on the improved CenterNet with attention mechanism[J]. Multimedia Tools and Applications, 2022, 81(6):7993-8005.
doi: 10.1007/s11042-022-12128-3 |
[17] |
李豪, 袁广林, 李从利, 等. 基于2D循环卷积和难度敏感轮廓交并比损失的Deep Snake[J]. 模式识别与人工智能, 2021, 34(11):1004-1016.
doi: 10.16451/j.cnki.issn1003-6059.202111004 |
Li Hao, Yuan Guanglin, Li Congli, et al. Deep Snake based on 2D circular convolution and difficulty sensitive contour intersection loss[J]. Pattern Recognitionand Artificial Intelligence, 2021, 34(11):1004-1016.
doi: 10.16451/j.cnki.issn1003-6059.202111004 |
|
[18] | Xu H Y, Xu X L, Zuo Y B. Applying morphology to improve Canny operator's image segmentation method[J]. The Journal of Engineering, 2019(23):8816-8819. |
[1] | SUN Hong,ZHAO Yingzhi. Lightweight Generative Adversarial Networks Based on Multi-Scale Gradient [J]. Electronic Science and Technology, 2023, 36(7): 32-38. |
[2] | OU Jingyi,TIAN Ying,XIANG Xin,SONG Qizhe. Fault Diagnosis of Few Shot Industrial Process Based on Transfer BN-CNN Framework [J]. Electronic Science and Technology, 2023, 36(7): 49-55. |
[3] | ZENG Xinxin,ZHANG Hongyan. A Farmland Parcel Extraction Network Based on Multi-Scale Semantic Information Enhancement [J]. Electronic Science and Technology, 2023, 36(7): 70-74. |
[4] | LI Keran,CHEN Sheng,KE Panpan. A Method of Facial Mask Segmentation Based on CA-Net [J]. Electronic Science and Technology, 2023, 36(6): 64-71. |
[5] | LIU Yuwei,CAO Min,FENG Haojia. CNAS Recognition Criteria Automatic Benchmarking System Based on Natural Language Processing [J]. Electronic Science and Technology, 2023, 36(5): 28-33. |
[6] | ZHENG Yuheng,FU Dongxiang. UAV Detection Based on Slim-YOLOv4 with Embedded Device [J]. Electronic Science and Technology, 2023, 36(5): 55-61. |
[7] | SHI Jianke,QIAO Meiying,LI Bingfeng,ZHAO Yan. Underwater Occlusion Target Detection Algorithm Based on Attention Mechanism [J]. Electronic Science and Technology, 2023, 36(5): 62-70. |
[8] | LUO Ruipeng,FENG Mingke,HUANG Xin,ZOU Renling,LI Dan. A Review of Research on EEG Signal Preprocessing Methods [J]. Electronic Science and Technology, 2023, 36(4): 36-43. |
[9] | CUI Zhuodong,CHEN Wei,YIN Zhong. Helmet Wearing Detection Based on Enhanced Feature Fusion Network [J]. Electronic Science and Technology, 2023, 36(4): 44-51. |
[10] | BAI Yingqi,PALIDAN·Tuerxun . A Scientific Literature Recommendation Method Based on Multi-Task Learning [J]. Electronic Science and Technology, 2023, 36(4): 59-64. |
[11] | TANG Zheng,ZHANG Huilin,MA Lixin,LIU Jinzhi,WANG Hao. Identification of Foreign Objects on Transmission Lines Using Lightweight Network Algorithm [J]. Electronic Science and Technology, 2023, 36(4): 71-77. |
[12] | LU Dongxiang. Research Progress of Node Assignment Optimization Strategy in Road Traffic Network [J]. Electronic Science and Technology, 2023, 36(3): 81-86. |
[13] | ZUO Bin,LI Feifei. An Effective Segmentation Method for COVID-19 CT Image Based on Attention Mechanism and Inf-Net [J]. Electronic Science and Technology, 2023, 36(2): 22-28. |
[14] | ZHAO Wenjun,ZHAI Han,ZHANG Hongyan. Total Variation and Sparsity Regularized Deep Nonnegative Matrix Factorization for Hyperspectral Unmixing [J]. Electronic Science and Technology, 2023, 36(2): 53-60. |
[15] | YU Qiongfang,NIU Dongyang. Mixed Prediction of Mine Pressure Time and Space Based on LSTM Network [J]. Electronic Science and Technology, 2023, 36(2): 67-72. |
|