Journal of Xidian University ›› 2024, Vol. 51 ›› Issue (2): 170-181.doi: 10.19665/j.issn1001-2400.20230604
• Computer Science and Technology & Cyberspace Security • Previous Articles Next Articles
ZHANG Qiang(), ZHOU Shuisheng(), ZHANG Ying()
Received:
2023-04-08
Online:
2024-04-20
Published:
2023-09-20
CLC Number:
ZHANG Qiang, ZHOU Shuisheng, ZHANG Ying. Adaptivedensity peak clustering algorithm[J].Journal of Xidian University, 2024, 51(2): 170-181.
"
数据集 | DPC | DBSCAN | SNNDPC | DGDPC | DPADN | DPC-NaN |
---|---|---|---|---|---|---|
ACC | ||||||
VDD_Heartshaped | 0.842 3 | 1.000 0 | 1.000 0 | 1.000 0 | 1.000 0 | 1.000 0 |
Aggregation | 1.000 0 | 0.977 9 | 0.968 1 | 0.995 6 | 1.000 0 | 1.000 0 |
Flame | 1.000 0 | 0.941 7 | 0.897 5 | 1.000 0 | 1.000 0 | 1.000 0 |
Jain | 0.860 6 | 0.973 2 | 1.000 0 | 1.000 0 | 1.000 0 | 1.000 0 |
Pathbased | 0.740 0 | 0.803 3 | 0.900 1 | 0.983 3 | 0.992 4 | 1.000 0 |
Recall | ||||||
VDD_Heartshaped | 0.734 5 | 1.000 0 | 1.000 0 | 1.000 0 | 1.000 0 | 1.000 0 |
Aggregation | 1.000 0 | 0.952 9 | 0.959 4 | 0.992 4 | 1.000 0 | 1.000 0 |
Flame | 1.000 0 | 0.908 1 | 0.950 2 | 1.000 0 | 1.000 0 | 1.000 0 |
Jain | 0.514 6 | 0.973 1 | 1.000 0 | 1.000 0 | 1.000 0 | 1.000 0 |
Pathbased | 0.457 2 | 0.589 0 | 0.929 4 | 0.952 3 | 0.964 5 | 1.000 0 |
NMI | ||||||
VDD_Heartshaped | 0.856 2 | 1.000 0 | 1.000 0 | 1.000 0 | 1.000 0 | 1.000 0 |
Aggregation | 1.000 0 | 0.968 2 | 0.950 0 | 0.997 5 | 1.000 0 | 1.000 0 |
Flame | 1.000 0 | 0.757 1 | 0.976 8 | 1.000 0 | 1.000 0 | 1.000 0 |
Jain | 0.466 7 | 0.847 0 | 1.000 0 | 1.000 0 | 1.000 0 | 1.000 0 |
Pathbased | 0.505 4 | 0.688 4 | 0.952 9 | 0.965 6 | 0.975 4 | 1.000 0 |
"
数据集 | DPC | DBSCAN | SNNDPC | DGDPC | DPADN | DPC-NaN |
---|---|---|---|---|---|---|
ACC | ||||||
Breastcancer | 0.681 0 | 0.640 5 | 0.649 9 | 0.781 7 | 0.651 5 | 0.856 1 |
Ecoli | 0.643 3 | 0.490 5 | 0.427 3 | 0.750 1 | 0.437 3 | 0.691 1 |
Vote | 0.812 6 | 0.732 6 | 0.806 0 | 0.872 5 | 0.530 2 | 0.896 6 |
Thyroid | 0.697 7 | 0.617 4 | 0.697 7 | 0.596 6 | 0.697 7 | 0.716 4 |
Vehide | 0.240 0 | 0.357 3 | 0.362 0 | 0.436 1 | 0.261 2 | 0.367 6 |
Robotnavigation | 0.308 5 | 0.305 2 | 0.306 4 | 0.423 3 | 0.309 1 | 0.454 5 |
RI | ||||||
Breast cancer | 0.692 2 | 0.568 9 | 0.500 0 | 0.789 0 | 0.502 1 | 0.825 9 |
Ecoli | 0.509 3 | 0.406 3 | 0.311 6 | 0.663 4 | 0.201 2 | 0.654 9 |
Vote | 0.782 8 | 0.623 8 | 0.804 8 | 0.872 3 | 0.496 0 | 0.900 8 |
Thyroid | 0.333 3 | 0.322 3 | 0.333 3 | 0.303 2 | 0.333 3 | 0.377 8 |
Vehide | 0.254 4 | 0.323 5 | 0.153 2 | 0.388 2 | 0.254 8 | 0.349 0 |
Robotnavigation | 0.263 4 | 0.257 8 | 0.276 0 | 0.452 2 | 0.202 0 | 0.487 6 |
NMI | ||||||
Breast cancer | 0.382 3 | 0.294 2 | 0.325 1 | 0.547 8 | 0.359 2 | 0.568 3 |
Ecoli | 0.374 0 | 0.139 6 | 0.232 5 | 0.609 4 | 0.015 6 | 0.568 4 |
Vote | 0.530 1 | 0.458 9 | 0.528 9 | 0.555 2 | 0.307 5 | 0.561 4 |
Thyroid | 0.133 3 | 0.104 4 | 0.133 3 | 0.123 3 | 0.133 3 | 0.179 9 |
Vehide | 0.119 8 | 0.147 5 | 0.098 9 | 0.323 3 | 0.118 7 | 0.156 6 |
Robotnavigation | 0.095 8 | 0.094 9 | 0.104 6 | 0.124 5 | 0.089 1 | 0.134 3 |
运行时间/s | ||||||
Breast cancer | 6.75 | 9.90 | 10.26 | 5.65 | 2.56 | 7.84 |
Ecoli | 7.33 | 10.66 | 12.88 | 8.79 | 6.71 | 9.06 |
Vote | 5.92 | 10.57 | 13.26 | 4.57 | 3.57 | 7.66 |
Thyroid | 8.47 | 12.36 | 12.46 | 8.57 | 5.63 | 9.69 |
Vehide | 9.88 | 16.58 | 15.66 | 10.24 | 7.26 | 11.27 |
Robotnavigation | 17.35 | 56.15 | 109.36 | 46.16 | 35.37 | 41.07 |
[1] | HAN J, KAMBER M. Data Mining:Concepts and Techniques[M]. San Francisco: Morgan Kaufmann, 2000:559-569. |
[2] | WU W, PENG M. A Data Mining Approach Combining K-Means Clustering with Bagging Neural Network for Short-Term Wind Power Forecasting[J]. IEEE Internet of Things Journal, 2017, 4(4):979-986. |
[3] | HOU J, LIU W, CUI H, et al. Towards Parameter-Independent Data Clustering and Image Segmentation[J]. Pattern Recognition, 2016, 60(C):25-36. |
[4] |
XU R, WUNSCH D. Survey of Clustering Algorithms[J]. IEEE Transactions on Neural Networks, 2005, 16(3):645-678.
pmid: 15940994 |
[5] | MAU T N, INOGUCHI Y, HUYNH V N. A Novel Cluster Prediction ApproachBased on Locality-Sensitive Hashing for Fuzzy Clustering of Categorical Data[J]. IEEE Access, 2022,10:34196-34206. |
[6] | 秦宁宁, 张臣臣. 模糊聚类下的接入点选择匹配定位算法[J]. 西安电子科技大学学报, 2022, 49(4):71-81. |
QIN Ningning, ZHANG Chenchen. Access Point Selection Matching Localization Algorithm Based on Fuzzy Clustering[J]. Journal of Xidian University, 2022, 49(4):71-81. | |
[7] | WANG Y, PANG W, ZHOU J. An Improved Density Peak Clustering Algorithm Guided by Pseudo Labels[J]. Knowledge-Based Systems, 2022,252:109374. |
[8] | LEE J S, LEE H T, CHO I S. Maritime Traffic Route Detection FrameworkBased on Statistical Density Analysis from AIS Data Using a Clustering Algorithm[J]. IEEE Access, 2022,10:23355-23366. |
[9] | MACQUEEN J. Some Methods for Classification and Analysis of Multivariate Observations[C]// Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: Berkeley Symposium on Mathematical Statistics and Probability, 1967:281-297. |
[10] | JAIN A K. Data clustering:50 Years beyond K-means[J]. Pattern Recognition Letters, 2010, 31(8):651-666. |
[11] | RODRIGUEZ A, LAIO A. Clustering by Fast Search and Find of Density Peaks[J]. Science, 2014, 344(6191):1492-1496. |
[12] | DU M, DING S, JIA H. Study on Density Peaks Clustering Based on K-Nearest Neighbors and Principal Component Analysis[J]. Knowledge-Based Systems, 2016,99:135-145. |
[13] | XIE J, GAO H, XIE W, et al. Robust Clustering by Detecting Density Peaks and Assigning Points Based on Fuzzy Weighted K-Nearest Neighbors[J]. Information Sciences, 2016,354:19-40. |
[14] | LIU R, WANG H, YU X. Shared-Nearest-Neighbor-Based Clustering by Fast Search and Find of Density Peaks[J]. Information Sciences, 2018,450:200-226. |
[15] | TONG W, LIU S, GAO X. A Density-Peak-Based Clustering Algorithm of Automatically Determining the Number of Clusters[J]. Neurocomputing, 2021, 458(8):655-666. |
[16] | ZHANG Z, ZHU Q, ZHU F, et al. Density Decay Graph-Based Density Peak Clustering[J]. Knowledge-Based Systems, 2021, 224(4):107075. |
[17] | GUO W, WANG W, ZHAO S, et al. Density Peak Clustering with Connectivity Estimation[J]. Knowledge-Based Systems, 2022,243:108501. |
[18] | ZHU Qi, FENG J, HUANG J. Natural Neighbor:A Self-Adaptive Neighborhood Method without Parameter K[J]. Pattern Recognition Letters, 2016,80:30-36. |
[19] | NIE Q, NIE Z. Natural NeighborGalerkin Method for Electromagnetic Field Analysis[C]//2022 Global Conference on Robotics,Artificial Intelligence and Information Technology. Piscataway:IEEE, 2022: 811-814. |
[20] | XIONG J, ZANG W, CHE J, et al. Density Peaks Clustering Based on Natural Search Neighbors and Manifold Distance Metric[J]. IEEE Access, 2022,10:114642-114656. |
[21] | FU L, MEDICO E. FLAME, A Novel Fuzzy Clustering Method for the Analysis of DNA Microarray Data[J]. BMC Bioinformatics, 2007, 8(1):1-15. |
[22] | CHEN J, YU P S. A Domain Adaptive Density Clustering Algorithm for Data with Varying Density Distribution[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 33(6):2310-2321. |
[23] | CHANG H, YEUNG D Y. Robust Path-Based Spectral Clustering[J]. Pattern Recognition, 2008, 41(1):191-203. |
[24] | JAIN A K, LAW M. Data Clustering:A User’s Dilemma[C]// International Conference on Pattern Recognition & Machine Intelligence. Heidelberg:Springer, 2005:1-10. |
[25] | YANG L, CHEUNG Y M, TANG Y. Self-AdaptiveMultiprototype-Based Competitive Learning Approach:A k-Means-Type Algorithm for Imbalanced Data Clustering[J]. IEEE Transactions on Cybernetics, 2019, 51(3):1598-1612. |
[26] | FRANTI P, SIERANOJA S. k-Means Properties on Six Clustering Benchmark Datasets[J]. Applied Intelligence, 2018,48:4743-4759. |
[27] | FREIRE A L, BARRETO G A, VELOSO M, et al. Short-Term Memory Mechanisms in Neural Network Learning of Robot Navigation Tasks:A Case Study[C]// Robotics Symposium. Piscataway:IEEE, 2009:1-6. |
[28] | DUA D, GRAFF C. UCI Machine Learning Repository(2019)[DB/OL].[2019-01-01]. http://archive.ics.uci.edu/ml. |
[29] | SEPTIARINI A, HAMDANI H, SARI S U, et al. Image Processing Techniques for Tomato Segmentation Applying k-Means Clustering and Edge Detection Approach[C]//2021 International Seminar on Machine Learning,Optimization,and Data Science. Piscataway:IEEE, 2021: 92-96. |
[30] | KHILKHAL R, ISMAEL M. Brain Tumor Segmentation Utilizing Thresholding and k-Means Clustering[C]//2022 Muthanna International Conference on Engineering Science and Technology. Piscataway:IEEE, 2022: 43-48. |
[31] | ZHANG H, PENG Q. PSO and k-Means-Based Semantic Segmentation toward Agricultural Products[J]. Future Generation Computer Systems, 2022,126:82-87. |
[32] | 张泽欢, 刘强, 国狄非. 面向大规模零样本图像识别的高效算法框架[J]. 西安电子科技大学学报, 2022, 49(6):103-110. |
ZHANG Zehuan, LIU Qiang, GUO Difei. High Efficient Framework for Large-Scale Zero-Shot Image Recognition[J]. Journal of Xidian University, 2022, 49(6):103-110. |
[1] | ZHU Dongxia, JIA Hongjie, HUANG Longxia. Subspace clustering algorithm optimized by non-negative Lagrangian relaxation [J]. Journal of Xidian University, 2024, 51(1): 100-113. |
[2] | HAN Bing,GAO Lu,GAO Xinbo,CHEN Weiming. Nuclear segmentation method for thyroid carcinoma pathologic images based on boundary weighting [J]. Journal of Xidian University, 2023, 50(5): 75-86. |
[3] | HAN Yongkang, CHEN Jian, ZHOU Yuchen, YANG Long. Fairness optimization for the multi-user NOMA-IRS system [J]. Journal of Xidian University, 2023, 50(2): 1-10. |
[4] | CHEN Zhen,LI Cuiyun,LI Xiang. Algorithm for tracking the 3D extended target based on the B-spline surface [J]. Journal of Xidian University, 2023, 50(2): 101-111. |
[5] | QIN Ningning,ZHANG Chenchen. Access point selection matching localization algorithm based on fuzzy clustering [J]. Journal of Xidian University, 2022, 49(4): 71-81. |
[6] | WANG Zhaoyu,GUO Jichang,WANG Tianbao,ZHENG Sida,ZHANG Yi. Algorithm for clarification of the underwater image combining saliency information [J]. Journal of Xidian University, 2022, 49(3): 137-146. |
[7] | DOU Peipei,ZENG Yuqin,LU Yi,MA Hongliang,XU Mengying,ZHOU Jie. Improved method for energy efficient clustering of the wireless sensor network [J]. Journal of Xidian University, 2022, 49(3): 68-73. |
[8] | YAN Xixi,ZHAO Qiang,TANG Yongli,LI Yingying,LI Jingran. Multi-keyword search encryption scheme supporting flexible access control [J]. Journal of Xidian University, 2022, 49(1): 55-66. |
[9] | ZHANG Chunxiang,ZHOU Xuesong,GAO Xueyao,LIU Huan. Semi-supervised word sense disambiguation by combining k-means clustering and the LSTM network [J]. Journal of Xidian University, 2021, 48(6): 161-171. |
[10] | ZHANG Jiaqi,TAO Haihong,ZHANG Xiushe,HAN Chunlei. A multi-frame track before detect algorithm utilizing measurement space clustering [J]. Journal of Xidian University, 2021, 48(5): 231-238. |
[11] | ZHOU Peng,YANG Jun. Semantic segmentation of remote sensing images based on neural architecture search [J]. Journal of Xidian University, 2021, 48(5): 47-57. |
[12] | HE Yunbin,LENG Xin,WAN Jing. Unbalanced data weighted boundary point integration undersampling method [J]. Journal of Xidian University, 2021, 48(4): 176-183. |
[13] | ZHOU Jianyu,WEI Yinsheng,XU Rongqing. Improved ionospheric clutter classification method based on fuzzy C-means clustering [J]. Journal of Xidian University, 2021, 48(2): 35-41. |
[14] | LI Jinze,WANG Zhonghao,LI Mengheng,QIN Tuanfa. Spectrum sharing management method for the small-area-blockchain based on district partition [J]. Journal of Xidian University, 2020, 47(6): 122-130. |
[15] | LI Zhao,YUAN Wenhao,REN Chongguang,HUANG Chengcheng,DONG Xiaoxiao. Approximate computing method based on cross-layer dynamic precision scaling for the k-means [J]. Journal of Xidian University, 2020, 47(3): 50-57. |
|