[1]Hansen L K, Salamon P. Neural Network Ensembles[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1990, 12(10): 993-1001.
[2]Li Ying, Jiang Jianmin. Combination of SVM Knowledge for Microcalcification Detection in Digital Mammograms[C]//IDEAL 2004, LNCS 3177. Berlin: Springer, 2004: 359-365.
[3]Lanckriet G. Learning the Kernel Matrix with Semi-definite Programmming[J]. Journal of Machine Learning Research, 2004(5): 27-72.
[4]李青, 焦李成. 利用集成支撑矢量机提高分类性能[J]. 西安电子科技大学学报, 2007, 34(1): 68-70.
Li Qing, Jiao LiCheng. Improvement Classification Performance by the Support Vector Machine Ensemble [J]. Journal of Xidian University, 2007,34(1):68-70.
[5]何鸣, 李国正, 袁捷. 医学诊断中集成学习技术的研究[J].计算机工程与应用, 2006, 42(28): 1-6.
He Ming, Li GuoZheng, Yuan Jie. A Study on Ensemble Methods for Medical Diagnosis [J]. Computer Engineering and Application, 2006, 42(28): 1-6.
[6]Skyrpnyk I. DIMACS Technical Center. Feature Selection and Training Set Sampling for Ensemble Learning on Hetergeneous Data[R]. New Jersey: the State University of New Jersey, 2003.
[7]Rose C, Turi D, Williams A, et al. Digital Database for Screening Mammography[DB/OL]. [1998-08-20]. http://marathon.csee.usf.edu/Mammography/Database.html.
[8]ELCAP Lab, Weill Medical College of Cornell University. ELCAP Public Lung Image Database [DB/OL]. [2003-12-20]. http://www.via.cornell.edu/lungdb.html.
[9]Schapire R E. The Strength of Weak Learnability[J]. Machine Learning, 1990, 5(2):197-227.
[10]罗宏君. 基于双阈值的肺结节自动检测 [D]. 西安: 西安电子科技大学, 2008.
Luo HongJun. Automatic Nodule Detection and Extraction Based on Two Different Thresholds[D]. Xi'an: Xidian University, 2008.
[11]王宇. 基于SVM的计算机辅助检测系统 [D]. 西安: 西安电子科技大学, 2008.
Wang Yu. A Computer Aided Detection System Based on SVM[D]. Xi'an: Xidian University, 2008.
[12]张新生, 高新波, 王颖, 等. 乳腺图像钙化簇主动学习检测新方法[J]. 西安电子科技大学学报, 2008, 35(5): 871-877.
Zhang Xinsheng, Gao Xinbo, Wang Ying, et al. New Method for Microcalcification Clusteres Detection Using Active Learning in the Mammogram [J]. Journal of Xidian University, 2008, 35(5): 871-877. |