Journal of Xidian University ›› 2020, Vol. 47 ›› Issue (6): 148-157.doi: 10.19665/j.issn1001-2400.2020.06.021
• Information and Communications Engineering & Cyberspace Security • Previous Articles Next Articles
CHENG Lei(),WANG Yue,TIAN Chunna()
Received:
2019-12-10
Online:
2020-12-20
Published:
2021-01-06
Contact:
Chunna TIAN
E-mail:lcheng_123@163.com;chnatian@xidian.edu.cn
CLC Number:
CHENG Lei,WANG Yue,TIAN Chunna. Residual attention mechanism for visual tracking[J].Journal of Xidian University, 2020, 47(6): 148-157.
"
算法 | 未定义 属性 | 摄像机 运动 | 光照 变化 | 移动 | 遮挡 | 尺度 变化 | 平均 | 加权 平均 |
---|---|---|---|---|---|---|---|---|
GOTURN | 50.78 | 47.58 | 56.91 | 43.97 | 40.04 | 46.49 | 47.63 | 47.27 |
GOTURN_concat | 49.85 | 48.42 | 61.65 | 41.56 | 38.00 | 49.24 | 48.12 | 47.33 |
GOTURN_atten | 51.08 | 50.71 | 64.45 | 43.99 | 36.29 | 52.49 | 49.84 | 49.23 |
GOTURN_giou | 50.99 | 49.34 | 62.13 | 44.27 | 40.69 | 47.23 | 49.11 | 48.24 |
GOTURN_all | 50.81 | 50.51 | 64.95 | 45.30 | 40.48 | 53.53 | 50.93 | 49.87 |
"
算法 | 未定义 属性 | 摄像机 运动 | 光照 变化 | 移动 | 遮挡 | 尺度 变化 | 平均 | 加权 平均 |
---|---|---|---|---|---|---|---|---|
GOTURN | 32.000 0 | 58.000 0 | 4.000 0 | 45.000 0 | 26.000 0 | 19.000 0 | 30.666 7 | 38.0153 |
GOTURN_concat | 30.000 0 | 60.000 0 | 2.000 0 | 49.000 0 | 26.000 0 | 20.000 0 | 31.166 7 | 38.886 7 |
GOTURN_atten | 34.000 0 | 51.000 0 | 2.000 0 | 35.000 0 | 22.000 0 | 22.000 0 | 27.666 7 | 34.889 9 |
GOTURN_giou | 38.000 0 | 70.000 0 | 2.000 0 | 47.000 0 | 24.000 0 | 22.000 0 | 33.833 3 | 43.596 4 |
GOTURN_all | 27.000 0 | 55.000 0 | 4.000 0 | 44.000 0 | 24.000 0 | 23.000 0 | 29.666 7 | 36.550 0 |
"
算法 | 精确度/(%) | 鲁棒性/(f) |
---|---|---|
DFT | 44.56 | 59.611 6 |
DAT | 45.82 | 28.353 3 |
EBT | 45.29 | 15.193 5 |
STRUCK2014 | 44.52 | 56.102 7 |
KCF2014 | 48.88 | 38.082 0 |
ACT | 43.72 | 42.603 1 |
DPT | 48.46 | 31.938 9 |
MLDF | 48.73 | 15.043 7 |
GOTURN | 47.27 | 38.015 3 |
GOTURN_atten | 49.23 | 34.889 9 |
GOTURN_concat | 47.33 | 38.886 7 |
GOTURN_giou | 48.24 | 43.596 4 |
GOTURN_all | 49.87 | 36.146 8 |
[1] | 王海军, 张圣燕. 自适应权值卷积特征的鲁棒目标跟踪算法[J]. 西安电子科技大学学报, 2019, 46(1): 117-123. |
WANG Haijun, ZHANG Shengyan. Robust Object Tracking Via Adaptive Weight Convolutional Features[J]. Journal of Xidian University, 2019, 46(1): 117-123. | |
[2] |
HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-Speed Tracking with Kernelized Correlation Filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015. 37(3): 583-596.
doi: 10.1109/TPAMI.2014.2345390 pmid: 26353263 |
[3] | DANELLJAN M, HAGER G, KHAN F S, et al. Accurate Scale Estimation for Robust Visual Tracking[C]// Proceedings of the 2014 British Machine Vision Conference. Durham: British Machine Vision Association, 2014. DOI: 10.5244/C.28.65. |
[4] | 宋建锋, 苗启广, 申猛, 等. 多特征融合的相关滤波红外单目标跟踪算法[J]. 西安电子科技大学学报, 2019, 46(5): 142-147. |
SONG Jianfeng, MIAO Qiguang, SHEN Meng, et al. Algorithm for Tracking an Infrared Single Target Based on Correlation Filtering with Multi-feature Fusion[J]. Journal of Xidian University, 2019, 46(5): 142-147. | |
[5] | 王欣远, 肖嵩, 李磊, 等. 融合ELM和相关滤波的鲁棒性目标跟踪算法[J]. 西安电子科技大学学报, 2019, 46(1): 57-63. |
WANG Xinyuan, XIAO Song, LI Lei, et al. Robust Target Tracking Algorithm Based on the ELM and Discriminative Correlation Filter[J]. Journal of Xidian University, 2019, 46(1): 57-63. | |
[6] | NAM H, HAN B. Learning Multi-domain Convolutional Neural Networks for Visual Tracking[C]// Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 4293-4302. |
[7] | NAM H, BAEK M, HAN B. Modeling and Propagating CNNs in a Tree Structure for Visual Tracking[C /OL]. [2019-11- 21]. https://arxiv.org/pdf/1608.07242.pdf. |
[8] | HELD D, THRUN S, SAVARESE S. Learning to Track at 100 FPS with Deep Regression Networks[C]// Lecture Notes in Computer Science: 9905. Heidelberg: Springer Verlag, 2016: 749-765. |
[9] | BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully Convolutional Siamese Networks for Object Tracking[C]// Lecture Notes in Computer Science: 9914. Heidelberg: Springer Verlag, 2016: 850-865. |
[10] | GUO Q, FENG W, ZHOU C, et al. Learning Dynamic Siamese Network for Visual Object Tracking[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 1781-1789. |
[11] | LI B, YAN J, WU W, et al. High Performance Visual Tracking with Siamese Region Proposal Network[C]// Proceedings of the 2018 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2018: 8971-8980. |
[12] | WANG Q, TENG Z, XING J, et al. Learning Attentions: Residual Attentional Siamese Network for High Performance Online Visual Tracking[C]// Proceedings of the 2018 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2018: 4854-4863. |
[13] | ZHU Z, WANG Q, LI B, et al. Distractor-aware Siamese Networks for Visual Object Tracking[C]// Lecture Notes in Computer Science: 11213. Heidelberg: Springer Verlag, 2018: 103-119. |
[14] | DANELLJAN M, ROBINSON A, KHAN F S, et al. Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking[C]// Lecture Notes in Computer Science: 9909. Heidelberg: Springer Verlag, 2016: 472-488. |
[15] | DANELLJAN M, BHAT G, SHAHBAZ KHAN F, et al. ECO: Efficient Convolution Operators for Tracking[C]// Proceedings of the 2017 30th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6931-6939. |
[16] | VALMADRE J, BERTINETTO L, HENRIQUES J, et al. End to End Representation Learning for Correlation Filter Based Tracking[C]// Proceedings of the 2017 30th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5000-5008. |
[17] | KRISTAN M, LEONARDIS A, MATAS J, et al. The Visual Object Tracking VOT2016 Challenge Results[C]// Lecture Notes in Computer Science: 9914. Heidelberg: Springer Verlag, 2016: 777-823. |
[18] | GUAN H, XUE X Y, AN Z Y. Advances on Application of Deep Learning for Video Object Tracking[J]. Acta Automatica Sinica, 2016, 42(6) : 834-847. |
[19] | RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet Large Scale Visual Recognition Challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252. |
[20] | JIA Y, SHELHAMER E, DONAHUE J, et al. Caffe: Convolutional Architecture for Fast Feature Embedding[C]// Proceedings of the 2014 ACM Conference on Multimedia. New York: ACM, 2014: 675-678. |
[21] | REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression[C]// Proceedings of the 2019 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington: IEEE Computer Society, 2019: 658-666. |
[22] | HARE S, SAFFARI A, TORR P H S. Struck: Structured Output Tracking with Kernels[C]// Proceedings of the 2011 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2011: 263-270. |
[23] | SEVILLA LARA L, LEARNED MILLER E. Distribution Fields for Tracking[C]// Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2012: 1910-1917. |
[24] | WANG L J, OUYANG W, WANG X, et al. STCT: Sequentially Training Convolutional Networks for Visual Tracking[C] // Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 1373-1381. |
[25] | FELSBERG M. Enhanced Distribution Field Tracking Using Channel Representations[C]// Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2013: 121-128. |
[26] | POSSEGGER H. MAUTHNER T. BISCHOF H. In Defense of Color-based Model-free Tracking[C]// Proceedings of the 2015 IEEE Computer Society Conference on Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2015: 2113-2120. |
[27] |
LUKEZIC A, CEHOVIN ZAJC L, KRISTAN M. Deformable Parts Correlation Filters for Robust Visual Tracking[J]. IEEE Transactions on Cybernetics, 2018, 48(6): 1849-1861.
doi: 10.1109/TCYB.2017.2716101 pmid: 28678728 |
[28] |
AKIN O, ERDEM E, ERDEM A, et al. Deformable Part-based Tracking by Coupled Global and Local Correlation filters[J]. Journal of Visual Communication and Image Representation, 2016, 38: 763-774.
doi: 10.1016/j.jvcir.2016.04.018 |
[29] |
SMEULDERS A W M, CHU D M, CUCCHIARA R, et al. Visual Tracking: An Experimental Survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1442-1468.
doi: 10.1109/TPAMI.2013.230 |
[1] | YU Haoyang,YIN Liang,LI Shufang,LV Shun. Recognition algorithm for the little sample radar modulation signal based on the generative adversarial network [J]. Journal of Xidian University, 2021, 48(6): 96-104. |
[2] | DONG Ruchan,JIAO Licheng,ZHAO Jin,SHEN Weiyan. Application of the deep fusion mechanism in object detection of remote sensing images [J]. Journal of Xidian University, 2021, 48(5): 128-138. |
[3] | MAO Zhaoyong,WANG Yichen,WANG Xin,SHEN Junge. Vehicle video surveillance and analysis system for the expressway [J]. Journal of Xidian University, 2021, 48(5): 178-189. |
[4] | SUN Yanjing,WEI Li,ZHANG Nianlong,YUN Xiao,DONG Kaiwen,GE Min,CHENG Xiaozhou,HOU Xiaofeng. Person re-identification method combining the DD-GAN and Global feature in a coal mine [J]. Journal of Xidian University, 2021, 48(5): 201-211. |
[5] | ZHOU Peng,YANG Jun. Semantic segmentation of remote sensing images based on neural architecture search [J]. Journal of Xidian University, 2021, 48(5): 47-57. |
[6] | ZHAN Keyu,SUN Yue,LI Ying. Video super-resolution based on multi-scale 3D convolution [J]. Journal of Xidian University, 2021, 48(5): 8-14. |
[7] | YANG Yunhang,MIN Lianquan. Multi-scalefusion sketch recognition model by dilated convolution [J]. Journal of Xidian University, 2021, 48(5): 92-99. |
[8] | ZHANG Yuhao,CHENG Peitao,ZHANG Shuhao,WANG Xiumei. Lightweight image super-resolution with the adaptive weight learning network [J]. Journal of Xidian University, 2021, 48(5): 15-22. |
[9] | CHEN Changchuan,WANG Haining,HUANG Lian,HUANG Tao,LI Lianjie,HUANG Xiangkang,DAI Shaosheng. Facial expression recognition based on local representation [J]. Journal of Xidian University, 2021, 48(5): 100-109. |
[10] | SONG Jianfeng,MIAO Qiguang,WANG Chongxiao,XU Hao,YANG Jin. Multi-scale single object tracking based on the attention mechanism [J]. Journal of Xidian University, 2021, 48(5): 110-116. |
[11] | WANG Haijun,ZHANG Shengyan,DU Yujie. UAV object tracking via the correlation filter with the response divergence constraint [J]. Journal of Xidian University, 2021, 48(5): 149-155. |
[12] | HUI Haisheng,ZHANG Xueying,WU Zelin,LI Fenglian. Method for stroke lesion segmentation using the primary-auxiliary path attention compensation network [J]. Journal of Xidian University, 2021, 48(4): 200-208. |
[13] | WANG Ping,JIANG Yuze,ZHAO Guanghui. Object detection based on the multiscale location Enhancement network [J]. Journal of Xidian University, 2021, 48(3): 85-90. |
[14] | GUO Zekun,TIAN Long,HAN Ning,WANG Penghui,LIU Hongwei,CHEN Bo. Radar HRRP based few-shot target recognition with CNN-SSD [J]. Journal of Xidian University, 2021, 48(2): 7-14. |
[15] | DU Lizhao,XU Yan,ZHANG Wei. Phased smoke detection algorithm using dual network fusion [J]. Journal of Xidian University, 2020, 47(4): 141-148. |
|