[1] |
KOWSARI K, MEIMANDI K J, HEIDARYSAFA M, et al. Text Classification Algorithms:A Survey[J]. Information, 2019, 10(4):150-172.
|
[2] |
DURAIRAJ D M, MOHAN B H K. A Convolutional Neural Network Based Approach to Financial Time Series Prediction[J]. Neural Computing and Applications, 2022, 34(16):13319-13337.
|
[3] |
CAMASTRA F, CAPONE V, CIARAMELLA A, et al. Predictionof Environmental Missing Data Time Series by Support Vector Machine Regression and Correlation Dimension Estimation[J]. Environmental Modelling & Software, 2022, 150:1043-1053.
|
[4] |
刘惠, 董锡耀, 杨志涵. 融合Stacking框架的BiGRU-LGB云负载预测模型[J]. 西安电子科技大学学报, 2023, 50(3):83-94.
|
|
LIU Hui, DONG Xiyao, YANG Zhihan. Bigru-LGB Cloud Load Prediction Model Incorporating Stacking Framework[J]. Journal of Xidian University, 2023, 50(3):83-94.
|
[5] |
张梦迪, 徐庆, 刘振鸿, 等. 基于动态滑动窗口BP神经网络的水质时间序列预测[J]. 环境工程技术学报, 2022, 12(3):809-815.
|
|
ZHANG Mengdi, XU Qing, LIU Zhenhong, et al. Water Quality Time Series Prediction Based on Dynamic Sliding Window BP Neural Network[J]. Journal of Environmental Engineering Technology, 2022, 12(3):809-815.
|
[6] |
MOHANTY M K, THAKURTA P K G, KAR S. Agricultural Commodity Price Prediction Model:A Machine Learning Framework[J]. Neural Computing and Applications, 2023, 35(20):15109-15128.
|
[7] |
YULE G U. On A Method of Investigating Periodicities Disturbed Series,with Special Reference to Wolfer's Sunspot Numbers[J]. Philosophical Transactions of the Royal Society of London.Series A,Containing Papers of a Mathematical or Physical Character, 1927, 226(636-646):267-298.
|
[8] |
WALKER G T. On Periodicity in Series of Related Terms[J]. Proceedings of the Royal Society of London.Series A,Containing Papers of a Mathematical and Physical Character, 1931, 131(818):518-532.
|
[9] |
CHO C, KWON K, WU C. On Weather Data-Based Prediction of Gamma Exposure Rates Using Gradient Boosting Learning for Environmental Radiation Monitoring[J]. Sensors, 2022, 22(18):7062.
|
[10] |
LIU S, FU B, WANG W, et al. Dynamic Sepsis Prediction for Intensive Care Unit Patients Using Xgboost-Based Model with Novel Time-Dependent Features[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(8):4258-4269.
|
[11] |
SIŁKA J, WIECZOREK M, WOŁNIAK M. Recurrent Neural Network Model for High-Speed Train Vibration Prediction from Time Series[J]. Neural Computing and Applications,2022,34(16):13305-13318.
|
[12] |
HOCHREITER S, SCHMIDHUBER J. Long Short-Term Memory[J]. Neural Computation, 1997, 9(8):1735-1780.
doi: 10.1162/neco.1997.9.8.1735
pmid: 9377276
|
[13] |
HAFEZI L, REZAEIAN M. Neural Architecture for Persian Named Entity Recognition[C]//Proceedings of 4th Iranian Conference on Signal Processing and Intelligent Systems. Piscataway:IEEE, 2018:61-64.
|
[14] |
KAUSHIK P, GUPTA A, ROY P P, et al. EEG-Based Age and Gender Prediction Using Deep BLSTM-LSTM Network Model[J]. IEEE Sensors Journal, 2019, 19(7):2634-2641.
doi: 10.1109/JSEN.2018.2885582
|
[15] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention Is All You Need[J]. Advances in Neural Information Processing Systems, 2017, 30:2171-2184.
|
[16] |
KITAEV N, KAISER Ł, LEVSKAYA A. Reformer:The Efficient Transformer[C]//Proceedings of 9th International Conference on Learning Representations. La Jolla: ICLR, 2020:1-12.
|
[17] |
ZERVEAS G, JAYARAMAN S, PATEL D, et al. A Transformer-Based Framework for Multivariate Time Series Representation Learning[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York: ACM, 2021:2114-2124.
|
[18] |
ZHOU H, ZHANG S, PENG J, et al. Informer:Beyond Efficient Transformer for Long Sequence Time-Series Forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2021:11106-11115.
|
[19] |
LIU G, GUO J. Bidirectional LSTM with Attention Mechanism and Convolutional Layer for Text Classification[J]. Neurocomputing, 2019, 337:325-338.
|
[20] |
PRADHAN T, KUMAR P, PAL S. CLAVER:An Integrated Framework of Convolutional Layer,Bidirectional LSTM with Attention Mechanism based Scholarly Venue Recommendation[J]. Information Sciences, 2021, 559:212-235.
|
[21] |
AGARWAL N, BRUKHIM N, HAZAN E, et al. Boosting for Control of Dynamical Systems[C]//Proceedings of International Conference on Machine Learning. New York: PMLR, 2020:96-103.
|
[22] |
GASPARIN A, LUKOVIC S, ALIPPI C. Deep Learning for Time Series Forecasting:The Electric Load Case[J]. CAAI Transactions on Intelligence Technology, 2022, 7(1):1-25.
|