电子科技 ›› 2022, Vol. 35 ›› Issue (12): 91-96.doi: 10.16180/j.cnki.issn1007-7820.2022.12.013

• • 上一篇    下一篇

基于高斯层次感知的知识图谱链接预测

胡雪若白,黄洁,王建涛,李一鸣   

  1. 战略支援部队信息工程大学 数据与目标工程学院,河南 郑州 450000
  • 收稿日期:2021-05-31 出版日期:2022-12-15 发布日期:2022-12-13
  • 作者简介:胡雪若白(1996-),女,硕士研究生。研究方向:知识图谱。|洁(1973-),女,教授。研究方向:信息融合。|王建涛(1984-),男,讲师。研究方向:雷达数据处理。
  • 基金资助:
    国家自然科学基金(61501513)

Link Prediction of Knowledge Graph Based on Gaussian Hierarchy-Aware

HU Xueruobai,HUANG Jie,WANG Jiantao,LI Yiming   

  1. School of Data and Target Engineering,Information Engineering University of Strategic Support Force,Zhengzhou 450000,China
  • Received:2021-05-31 Online:2022-12-15 Published:2022-12-13
  • Supported by:
    National Nature Science Foundation of China(61501513)

摘要:

传统知识图谱链接预测任务忽略了知识之间可能存在的语义层次以及知识的不确定性,导致链接预测结果不佳。针对该问题,文中提出一种高斯层次感知知识图谱链接预测模型。在该模型中,高斯嵌入部分引入实体和关系的高斯分布信息,以实体分布和关系分布之间的距离来衡量实体之间是否存在链接。词向量嵌入部分将学习到的实体和关系的词向量转换为复向量,将词的复向量映射到极坐标系中建模实体的语义层次,以嵌入向量之间的距离来衡量实体之间是否存在链接。根据D-S证据理论,融合两部分得分函数,从而实现准确的知识图谱链接预测。实验结果表明,该模型可以有效地对知识图中实体的语义层次和不确定性进行建模,并且在现有基准数据集上的效果较优于其他方法。

关键词: 人工智能, 知识图谱, 知识表示, 词向量, 链接预测, 高斯嵌入, 极坐标系, D-S证据理论

Abstract:

In view of at the problem that the traditional knowledge map link prediction task ignores the possible semantic level between knowledge and the low link prediction results caused by the uncertainty of knowledge, this study proposes a Gaussian level-aware knowledge map link prediction model. In the model, the Gaussian embedding part introduces the Gaussian distribution information of entities and relationships, and the distance between the entity distribution and the relationship distribution is used to measure whether there is a link between entities. The word vector embedding part converts the word vectors of entities and relations into complex vectors. The complex vector of words is mapped to the semantic level of the modeling entities in the polar coordinate system, and the distance between the embedding vectors is used to measure whether there is a link between entities. According to the D-S evidence theory, the score function of the two parts is fused to achieve accurate knowledge map link prediction. The experimental results show that the model can effectively model the semantic level and uncertainty of entities in the knowledge graph, and is superior to other methods on the existing benchmark data sets.

Key words: artificial intelligence, knowledge map, knowledge representation, word vector, link prediction, Gaussian embedding, polar coordinate system, D-S evidence theory

中图分类号: 

  • TP391