[1] |
Choudhury N A, Moulik S, Choudhury S. Cloud-based real-time and remote human activity recognition system using wearable sensors[C]. Taoyuan: Proceedings of the IEEE International Conference on Consumer Electronics-Taiwan, 2020.
|
[2] |
Tao L. Intelligent recognition method of human motion global features based on kinect skeleton information[C]. Harbin:Proceedings of the IEEE International Conference on Industrial Application of Artificial Intelligence, 2020.
|
[3] |
Ma H, Liu H. Research on human motion recognition system based on MEMS sensor network[C]. Chengdu: Proceedings of IEEE the Fourth Advanced Information Technology, Electronic and Automation Control Conference, 2019.
|
[4] |
Cui M M. Fang J D, Zhao Y D. Emotion recognition of human body's posture in open environment[C]. Hefei: Proceedings of the Chinese Control and Decision Conference, 2020.
|
[5] |
Wei S E, Ramakrishna V, Kanade T, et al. Convolutional pose machines[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
|
[6] |
Batchuluun G, Kang J K, Nguyen D T, et al. Action recognition from thermal videos using joint and skeleton information[J]. IEEE Access, 2021(9):11716-11733.
|
[7] |
Cao Z, Simon T, Wei S E, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
[8] |
Cao Z, Hidalgo G, Simon T, et al. OpenPose: Realtime multi-person 2D pose estimation using part affinity fields[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(1):172-186.
doi: 10.1109/TPAMI.2019.2929257
|
[9] |
Fang H S, Xie S, Tai Y W, et al. RMPE: Regional multi-person pose estimation[C]. Venice: Proceedings of the IEEE International Conference on Computer Vision, 2017.
|
[10] |
Chen Y, Wang Z, Peng Y, et al. Cascaded pyramid network for multi-person pose estimation[C]. Salt Lake City: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.
|
[11] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]. San Diego: Proceedings of the Third International Conference on Learning Representations, 2015.
|
[12] |
Schuldt C, Laptev I, Caputo B. Recognizing human actions: A local SVM approach[C]. Cambridge: Proceedings of the Seventeenth International Conference on Pattern Recognition, 2004.
|
[13] |
Turk M A, Pentland A. Face recognition using eigenfaces[J]. Journal of Cognitive Neuroscience, 2012, 3(1):71-86.
doi: 10.1162/jocn.1991.3.1.71
|
[14] |
Megrhi S, Jmal M, Souidene W, et al. Spatio-temporal action localization and detection for human action recognition in big dataset[J]. Journal of Visual Communication and Image Representation, 2016, 4(1):375-390.
|
[15] |
鹿天然, 于凤芹, 陈莹. 一种基于线性序列差异分析降维的人体行为识别方法[J]. 计算机工程, 2019, 45(3):237-241.
|
|
Lu Tianran, Yu Fengqin, Chen Ying. A human action recognition method based on LSDA reduction[J]. Computer Engineering, 2019, 45(3):237-241.
|
[16] |
刘命强. 基于深度学习的人体动作识别研究[D]. 开封: 河南大学, 2018.
|
|
Liu Mingqiang. Research on human action recognition based on deep learning[D]. Kaifeng: Henan University, 2018.
|
[17] |
Sakoe H, Chiba S. Dynamic programming algorithm optimization for spoken word recognition[J]. IEEE Transactions on Acoustics Speech and Signal Processing, 1978, 26(1):43-49.
doi: 10.1109/TASSP.1978.1163055
|
[18] |
黄东方, 杨晶东. 基于改进ND-DTW算法的动态手势识别[J]. 电子科技, 2017, 30(3):37-40.
|
|
Huang Dongfang, Yang Jingdong. Dynamic gesture recognition based on improved N-dimensional dynamic time warping[J]. Electronic Science and Technology, 2017, 30(3):37-40.
|