[1] |
Wang S, Schuurmans D, Peng F, et al. A mathematical theory of communication[M]. White Plains: Telephone and Telegraph Corporation, 1948:161-190.
|
[2] |
Hamming R W. Error detecting and error correcting codes[J]. Bell Labs Technical Journal, 1950, 29(2):147-160.
|
[3] |
Macwilliams F J, Sloane N. The theory of error-correcting codes[M]. New York: North Holland Publishing Company, 1977:56-62.
|
[4] |
Arikan E. Channel polarization: Method for constructing capacity-achieving codes for symmetric binary-input memoryless channels[J]. IEEE Transactions on Information Theory, 2009, 55(7):3051-3073.
doi: 10.1109/TIT.2009.2021379
|
[5] |
Richardson T J. Efficient encoding of quasi-cyclic low-density parity-check codes[J]. IEEE Transactions on Information Theory, 2006, 47(1):71-81.
|
[6] |
刘帅帅. 5G系统下polar码编译码技术研究[D]. 西安: 西安电子科技大学, 2021:25-70.
|
|
Liu Shuaishuai. Research on Polar encoding and deco-ding technology for 5G systems[D]. Xi'an: Xidian University, 2021:25-70.
|
[7] |
高尚蕾, 张治中, 段浴, 等. 5G系统中基于解调参考信号的信道估计方法[J]. 电讯技术, 2021, 61(2):191-196.
|
|
Gao Shanglei, Zhang Zhizhong, Duan Yu, et al. A channel estimation method based on demodulation reference signal in 5G system[J]. Telecommunication Engineering, 2021, 61(2):191-196.
|
[8] |
Korada S B, Sasoglu E. A class of transformations that polarize symmetric binary-input memoryless channels[C]. Seattle: IEEE International Symposium on Information Theory, 2009:932-940.
|
[9] |
Mori R, Tanaka T. Performance and construction of polar codes on symmetric binary-input memoryless channels[C]. Charlotte: IEEE International Symposium on Information Theory, 2009:153-161.
|
[10] |
Tanaka T. Channel polarization and olar codes[J]. IEICE Technical Report Information Theory, 2009, 109(1):23-30.
|
[11] |
Korada S B, Sasoglu E, Urbanke R. Polar :Characterization of xponent,ounds,and onstructions[J]. IEEE Transactions on Information Theory, 2010, 56(12):6253-6264.
doi: 10.1109/TIT.2010.2080990
|
[12] |
Abbe E, Telatar E. Polar codes for the m-user MAC[C]. Paso: International Zurich Seminar on Communications, 2010:556-561.
|
[13] |
Iwata K. A construction of approximateolar codes with linear time of codeword length[J]. IEICE Technical Report Information Theory, 2010, 110(3):25-30.
|
[14] |
Presman N, Shapira O, Litsyn S. Binary code kernels from code decompositions[C]. Denver: IEEE International Symposium on Information Theory Proceedings, 2011:79-85.
|
[15] |
Zhao S, Shi P, Wang B. Designs of hattacharyya parameter in the construction of olar codes[C]. Austin: The International Conference on Wireless munications,Networking and Mobile Computing, 2011:261-267.
|
[16] |
Bonik G, Goreinov S, Zamarashkin N. A variant of list plus CRC concatenated polar code[J]. Eprint Arxiv, 2012(1):1-4.
|
[17] |
Cayci S, Arikan O, Arikan E. Polar code construction for non-binary source alphabets[C]. Charlotte: The Signal Processing and Communications Applications Conference, 2012:187-195.
|
[18] |
Niu K, Lin J R, Chen K. Practical olar code construction over parallel channels[J]. IET Communications, 2013, 7(7):620-627.
doi: 10.1049/cmu2.v7.7
|
[19] |
Liang Z, Zhang Z, Wang X. Polar code with block-length N=3n[C]. Cleveland: International Conference on Wireless Communications & Signal Processing, 2013:89-96.
|
[20] |
Leroux C, Raymond A J, Sarkis G, et al. A semi-parallelsuccessive-cancellation decoder for Polar codes[J]. IEEE Transactions on Signal Processing, 2013, 61(2):289-299.
doi: 10.1109/TSP.2012.2223693
|
[21] |
Serbetci B, Pusane A E. Practical olar code construction using generalised generator matrices[J]. IET Communications, 2014, 8(4):419-426.
doi: 10.1049/cmu2.v8.4
|
[22] |
Anderson S E, Matthews G L. Exponents of olar codes using algebraic geometric code kernels[J]. Designs,Codes and Crytography, 2014, 73(2):699-717.
|
[23] |
Schurch C. A partial order for the synthesized channels of a olar code[C]. Omaha: IEEE International Symposium on Information Theory, 2016:77-90.
|
[24] |
Qin M, Guo J, Bhatia A, et al. Polar code constructions based on LLR evolution[J]. IEEE Communications Letters, 2017, 21(6):1221-1224.
doi: 10.1109/LCOMM.2017.2656126
|
[25] |
Mondelli M, Hassani S H, Urbanke R L. Construction of Polar codes with sublinear complexity[J]. IEEE Transactions on Information Theory, 2018, 65(5):2782-2791.
doi: 10.1109/TIT.18
|
[26] |
Chen P, Bai B, Ren Z, et al. Hash-codes with application to 5G[J]. IEEE Access, 2019, 7(1):12441-12455.
doi: 10.1109/Access.6287639
|
[27] |
Jin J, Deng R, Liu T, et al. On error performance and concatenated coding of codes in AWGN channels[J]. IOP Conference Series:Materials Science and Engineering, 2020, 768(7):72-75.
|
[28] |
Li G, Ye M, Hu S. Adjacent-bits-swapped Polar codes:A new code construction to speed up polarization[C]. Wichita: IEEE International Symposium on Information Theory, 2022:530-537.
|
[29] |
Seidl M, Huber J B. Improving successive cancellation decoding of olar codes by usage of inner block codes[C]. Arlington: International Symposium on Turbo Codes & Iterative Information Processing, 2010:881-889.
|
[30] |
Lee M, Li J, Park J Y. Successive cancellation decoding of codes:Channel synthesis and decomposition[J]. Journal of The Institute of Electronics Engineers of Korea Telecommunications, 2011, 48(4):24-36.
|
[31] |
Tal I, Vardy A. List decoding of codes[C]. Cambridge: IEEE International Symposium on Information Theory, 2012:169-177.
|
[32] |
Trifonov P. Efficient design and decoding of olar codes[J]. IEEE Transactions on Communications, 2012, 60(11):3221-3227.
doi: 10.1109/TCOMM.2012.081512.110872
|
[33] |
Leroux C, Raymond A J, Sarkis G, et al. Hardware implementation of successive cancellation decoders for Polar codes[J]. Journal of Signal Processing Systems, 2012, 69(3):305-315.
doi: 10.1007/s11265-012-0685-3
|
[34] |
Mahdavifar H, El-Khamy M, Lee J, et al. On the construction and decoding of concatenated Polar codes[C]. Portland: IEEE International Symposium on Information Theory, 2013:955-963.
|
[35] |
Onay S. Successive cancellation decoding of polar codes for the two-user binary-input MAC[C]. Dallas: IEEE International Symposium on Information Theory, 2013:879-887.
|
[36] |
Balatsoukas-Stimming A, Raymond A J, Gross W J, et al. Hardware architecture for list successive cancellation decoding of Polar codes[J]. IEEE Transactions on Circuits & Systems II Express Briefs, 2014, 61(8):609-613.
|
[37] |
Fan Y Z, Chen J, Xia C Y, et al. Low-latency list decoding of Polar codes with double thresholding[J]. IEEE International Conference on Acoustics, 2015(3):191-196.
|
[38] |
Zhang Q, Liu A, Zhang Y, et al. Practical design and decoding of parallel concatenated structure for systematic Polar codes[J]. IEEE Transactions on Communications, 2016, 64(2):456-466.
doi: 10.1109/TCOMM.2015.2502246
|
[39] |
Ercan F, Condo C, Hashemi S A, et al. Partitioned successive-cancellation flip decoding of Polar codes[C]. Columbus: IEEE International Conference on Acoustics,Speech and Signal Processing, 2016:498-508.
|
[40] |
Doan N, Hashemi S A, Mondelli M, et al. On the decoding of Polar codes on permuted factor graphs[C]. San Jose: IEEE Global Communications Conference, 2018:359-370.
|
[41] |
Zhang X, Liu Y, Chen S. BER evaluation based SCFlip algorithm for Polar codes decoding[J]. IEEE Access, 2019, 8(1):3042-3054.
doi: 10.1109/Access.6287639
|
[42] |
Feng B, Liu R, Sun H. Simplified successive-cancellation list decoding of non-binary Polar codes with rate-1 node[C]. Beijing: IEEE Wireless Communications and Networking Conference, 2020:733-749.
|
[43] |
Gao J, Zhang D, Dai J, et al. ResNet-like belief-propagation decoding for Polar codes[J]. IEEE Wireless Communication Letters, 2021, 10(5):934-937.
doi: 10.1109/LWC.2021.3050819
|