电子科技 ›› 2024, Vol. 37 ›› Issue (1): 66-71.doi: 10.16180/j.cnki.issn1007-7820.2024.01.010

• • 上一篇    下一篇

基于随机森林模型的城市非法营运车辆识别

黄子璇1,李桥兴1,2   

  1. 1.贵州大学 管理学院,贵州 贵阳 550025
    2.喀斯特地区发展战略研究中心,贵州 贵阳 550025
  • 收稿日期:2022-09-24 出版日期:2024-01-15 发布日期:2024-01-11
  • 作者简介:黄子璇(1999-),女,硕士研究生。研究方向:管理科学与大数据分析、管理系统工程等。|李桥兴(1973-),男,博士,教授。研究方向:管理科学与大数据分析、产业经济学等。
  • 基金资助:
    国家自然科学基金(71663011);贵州大学“研究基地及智库”重点专项课题(GDZX 2021030);贵州大学人文社会科学一般项目(GDYB2021020)

Research on Identification of Urban Illegal Vehicles Based on Random Forest Model

HUANG Zixuan1,LI Qiaoxing1,2   

  1. 1. School of Management,Guizhou University,Guiyang 550025,China
    2. Research Institute of Rural Revitalization in Karst Region of China,Guiyang 550025,China
  • Received:2022-09-24 Online:2024-01-15 Published:2024-01-11
  • Supported by:
    National Natural Science Foundation of China(71663011);Key Special Project of "Research Base and Think Tank" of Guizhou University(GDZX 2021030);General Humanities and Social Sciences Program of Guizhou University(GDYB2021020)

摘要:

区域经济社会的快速发展与交通出行的需求发展不匹配,在一定程度上为非法营运车辆提供了市场契机。城市高速公路的ETC(Electronic Toll Collection)数据可有效稽查高速公路的非法营运车辆,从而优化运行秩序并提升管理水平。文中提取ETC数据的有效字段,采用随机森林算法建立非法营运车辆识别分类器,加入CART(Classification and Regression Tree)分类树模型分类器和二元逻辑回归模型分类器与之对比,并以西南某市高速公路自2022年2月6日~2022年3月8日的ETC指标数据进行实证分析。结果表明,随机森林模型分类器比CART分类树模型分类器和二元逻辑回归模型分类器预测效果更好,其准确性高达98.75%。

关键词: 非法营运车辆, 随机森林模型, CART分类树模型, 二元逻辑回归模型, 分类算法, 机器学习, 深度学习, 识别算法

Abstract:

The rapid development of regional economy and society does not match the development of traffic demand, which provides market opportunities for illegal taxi operation. ETC(Electronic Toll Collection) data of urban expressways can effectively check illegal taxi operation on expressways, so as to optimize operation order and improve management level. This study extracts the effective fields of ETC data, uses the random forest algorithm to establish the illegal taxi operation recognition classifier, adds the classifiers of the CART(Classification and Regression Tree) classification tree model and the binary logistic regression model to conduct performance comparison, and makes an empirical analysis with the ETC index data of a highway in a southwest city from February 6, 2022 to March 8, 2022. The results show that performance the random forest model classifier is better than that of the CART classification tree model classifier and the binary logistic regression model classifier, and its accuracy score of the proposed model is 98.75%.

Key words: illegal taxi operation, random forest model, CART classification tree model, binary logistic regression model, classification algorithm, machine learning, deep learning, recognition algorithm

中图分类号: 

  • TP183