电子科技 ›› 2024, Vol. 37 ›› Issue (8): 60-67.doi: 10.16180/j.cnki.issn1007-7820.2024.08.009

• • 上一篇    下一篇

基于CSSA-LSTM的IGBT模块退化趋势预测

柳行青, 赵国帅, 韩素敏   

  1. 河南理工大学 电气工程与自动化学院, 河南 焦作 454000
  • 收稿日期:2022-04-06 出版日期:2024-08-15 发布日期:2024-08-21
  • 作者简介:柳行青(1996-),男,硕士研究生。研究方向:逆变器故障诊断。
    赵国帅(1999-),男,硕士研究生。研究方向:逆变器故障诊断。
    韩素敏(1979-),女,博士,教授。研究方向:智能信息处理、智能故障诊断。
  • 基金资助:
    河南省科技攻关项目(202102210094);国家重点研发计划(2016YFC0600906)

Prediction of Degradation Trend of IGBT Modules Based on CSSA-LSTM

LIU Hangqing, ZHAO Guoshuai, HAN Sumin   

  1. School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454000,China
  • Received:2022-04-06 Online:2024-08-15 Published:2024-08-21
  • Supported by:
    Henan Provincial Science and Technology Research Project(202102210094);National Key R&D Program Special Grant(2016YFC0600906)

摘要:

针对逆变器中绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)模块失效率高且易损伤老化以及器件退化过程难以预测的问题,文中提出一种结合长短期神经网络(Long Short-Term Memory,LSTM)和混沌麻雀的神经网络预测模型。通过引入二维皮尔逊相关系数法获取组合退化特征,构建基于LSTM的电压退化预测模型。利用模型自适应提取退化特征内部相关性,实现对关键信息筛选,挖掘深层次退化特征。在麻雀搜索算法的可行域中引入高斯变异的正态分布随机数和Tent映射对应的混沌序列,提升预测的精度和稳定性。对模型的学习率、神经元个数、batch-size进行寻优,寻找最优值匹配网络拓扑。采用最优结构参数的LSTM对各原始数据分别预测,得到最终的退化预测值。以NANS实验中心的加速退化数据集进行算例分析,并与常规预测算法对比,验证所提算法的有效性和准确性。

关键词: 混沌麻雀搜索算法, LSTM, 参数优化, 退化趋势预测, IGBT, 高斯变异, 预测模型, Tent映射

Abstract:

In view of the problem of high failure efficiency of IGBT(Insulated Gate Bipolar Transistor) modules in inverters, which are most prone to damage and aging, and the device degradation process is difficult to predict, a neural network prediction model combining LSTM(Long Short-Term Memory) and chaotic sparrow is proposed. By introducing the two-dimensional Pearson correlation coefficient method to obtain the combined degradation features, the LSTM-based voltage degradation prediction model is constructed. The model is used to adaptively extract the internal correlations of degradation features to realize the screening of key information and digging deep degradation features. In the feasible domain of sparrow search algorithm, Gaussian random numbers with normal distribution and chaotic sequence corresponding to Tent mapping are introduced to improve the accuracy and stability of prediction. The learning rate, number of neurons and batch-size of the model are optimized to find the optimal value to match the network topology. The LSTM with the optimal structural parameters is used to predict each original data separately and obtain the final degradation prediction value. The accelerated degradation data set of NANS experimental center is analyzed and compared with the conventional prediction algorithm to verify the effectiveness and accuracy of the proposed algorithm.

Key words: chaos sparrow search algorithm, LSTM, parameter optimization, prediction of degradation trends, IGBT, Gaussian variation, predictive models, Tent mapping

中图分类号: 

  • TN312