[1] |
Long Y Y, Twiefel J, Wallaschek J. A review on the mechanisms of ultrasonic wedge-wedge bonding[J]. Journal of Materials Processing Technology, 2017, 24(5): 241-258.
|
[2] |
徐盛友. 功率模块 IGBT 状态监测及可靠性评估方法研究[D]. 重庆: 重庆大学, 2013:2-3.
|
|
Xu Shengyou. Study on condition monitoring and reliability assessment of IGBT module[D]. Chongqing: Chongqing University, 2013:2-3.
|
[3] |
白梁军, 黄萌, 饶臻, 等. 基于GARCH模型的IGBT寿命预测[J]. 中国电机工程学报, 2020, 40(18):5787-5796.
|
|
Bai Liangjun, Huang Meng, Rao Zhen, et al. Lifetime prediction of IGBT based on GARCH model[J]. Proceedings of the CSEE, 2020, 40(18):5787-5796.
|
[4] |
Ribrant J, Bertling L. Survey of failures in wind power systems with focus on Swedish wind power plants during 1997-2005[J]. IEEE Transactions Energy Conversion, 2007, 22(1):167-173.
|
[5] |
王新, 黄冲, 许翔. PC三电平逆变器电解电容故障特征分析[J]. 电子科技, 2022, 35(5):81-86.
|
|
Wang Xin, Huang Chong, Xu Xiang. Parametric fault characteristics analysis of electrolytic capacitor in NPC three level inverter[J]. Electronic Science and Technology, 2022, 35(5):81-86.
|
[6] |
Li K J, Tian G Y, Cheng L, et al. State detection of bond wires in IGBT modules using eddy current pulsed ther-mography[J]. IEEE Transactions on Power Electronics, 2013, 29(9):5000-5009.
|
[7] |
Qin F, Bie X R, An T, et al. A lifetime prediction method for IGBT modules considering the self-accelerating effect of bond wire damage[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(2):2271-2284.
|
[8] |
Pedersen K B, Pedersen K. Dynamic modeling method of electro-thermo-mechanical degradation in IGBT modules[J]. IEEE Transactions on Power Electronics, 2016, 31(2):975-986.
|
[9] |
Hung T Y, Liao L L, Chiang K N, et al. Life prediction of high-cycle fatigue in aluminum bonding wires under power cycling test[J]. Device and Materials Reliability, 2014, 14(1):484-492.
|
[10] |
Eleffendi M A, Johnson C M. Application of Kalman filter to estimate junction temperature in IGBT power modules[J]. IEEE Transactions on Power Electronics, 2015, 31(2):1576-1587.
|
[11] |
Patil N, Das D, Pecht M. A prognostic approach for non-punch through and field stop IGBTs[J]. Microelectronics Reliability, 2012, 52(3):482-488.
|
[12] |
Alghassi A, Perinpanayagam S, Samie M. Stochastic RUL calculation enhanced with TDNN-based IGBT failure modeling[J]. IEEE Transactions on Reliability, 2015, 65(2):558-573.
|
[13] |
Sreenucht T, Alghassi A, Perinpanayagam S, et al. Probabilistic Monte-Carlo method for modelling and prediction of electronics component life[J]. International Journal of Advanced Computer Science and Applications, 2014, 5(1):1-10.
|
[14] |
Alghassi A, Perinpanayagam S, Samie M, et al. Computationally efficient, real-time, and embeddable prognostic techniques for power electronics[J]. IEEE Transactions on Power Electronics, 2015, 30(5):2623-2634.
|
[15] |
Ahsan M, Stoyanov S, Bailey C. Data driven prognostics for predicting remaining useful life of IGBT[C]. Pilsen: The Thirty-nineth IEEE International Spring Seminar on Electronics Technology, 2016:273-278.
|
[16] |
高金武, 贾志桓, 王向阳, 等. 基于PSO-LSTM的质子交换膜燃料电池退化趋势预测[J]. 吉林大学学报(工学版), 2022, 52(9):2192-2202.
|
|
Gao Jinwu, Jia Zhiheng, Wang Xiangyang, et al. Degradation trend prediction of proton exchange membrane fuel cell based on PSO-LSTM[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(9):2192-2202.
|
[17] |
赵婧宇, 池越, 周亚同. 基于SSA-LSTM模型的短期电力负荷预测[J]. 电工电能新技术, 2022, 41(6):71-79.
doi: 10.12067/ATEEE2107053
|
|
Zhao Jingyu, Chi Yue, Zhou Yatong. Short-term load forecasting based on SSA-LSTM model[J]. Advanced Technology of Electrical Engineering and Energy, 2022, 41(6):71-79.
doi: 10.12067/ATEEE2107053
|
[18] |
Lai W, Chen M Y, Li R, et al. Low ΔTj stress cycle effect in IGBT power module die-attach lifetime modeling[J]. IEEE Transactions on Power Electronics, 2016, 31(9):6575-6585.
|
[19] |
Wu W C, Held M, Jacob P, et al. Investigation on the long term reliability of power IGBT modules[C]. Yokohama: Proceedings of the Seventh International Symposium on Power Semiconductor Devices and IC’s, 1995:443-448.
|
[20] |
周鹏, 董朝轶, 陈晓艳, 等. 基于阶梯式Tent混沌和模拟退火的樽海鞘群算法[J]. 电子学报, 2021, 49(9):1724-1735.
doi: 10.12263/DZXB.20200593
|
|
Zhou Peng, Dong Chaoyi, Chen Xiaoyan, et al. A salp swarm algorithm based on stepped tent chaos and simulated annealing[J]. Acta Electronica Sinica, 2021, 49(9):1724-1735.
doi: 10.12263/DZXB.20200593
|
[21] |
王万良, 金雅文, 陈嘉诚, 等. 多角色多策略多目标粒子群优化算法[J]. 浙江大学学报(工学版), 2022, 56(3):531-541.
|
|
Wang Wanliang, Jin Yawen, Chen Jiacheng, et al. Multi-objective particle swarm optimization algorithm with multi-role and multi-strategy[J]. Journal of Zhejiang University(Engineering Science), 2022, 56(3):531-541.
|
[22] |
王磊, 何江涛, 张振国, 等. 基于信息筛选和拉依达准则识别地下水主要组分水化学异常的方法研究[J]. 环境科学学报, 2018, 38(3):919-929.
|
|
Wang Lei, He Jiangtao, Zhang Zhenguo, et al. Research on the method to identify the outliers of the main components of groundwater based on the information screening coupled with Pauta criterion[J]. Acta Scientiae Circumstantiate, 2018, 38(3):919-929.
|