[1]Turk Pentland M.Eigenfaces for recognition[J].Cognitive Science,1991,1(3):71-86 1991.
[2]Jolliffe I T.Principal component analysis[M].2nd Edition.Berlin:Springer,2002.
[3]Yang J,Yang J Y.From image vector to matrix:A straightforward image projection technique-IMPCA versus PCA[J].Pattern Recognition,2002,35(9):1997-1999.
[4]Chen S,Zhu Y.Subpattern-based principal component analysis[J].Pattern Recognition,2004,37(5):1081-1083.
[5]Gottuumukkal R,Asari V K.An improved face recognition technique based on modular PCA approach[J].Pattern Recognition Letter,2004,25(4):429-436.
[6]Scholkopf B,Smola A,Muller K R.Nonlinear component analysis as a kernel eigenvalue Problem[J].Neural Computer,2011(3):1299-1319.
[7]Yang Minghsuan.Kernel eigenfaces vs.kernel fisherfaces:face recognition using kernel methods[C].In Proceedings of the Fifth IEEE International Confernce on Automatic Face and Gesture Recognition,2002:215-220.
[8]Wang Yanmei,Zhang Yanzhu.Facial recognition base on kernel PCA[C].2010 Third International Conference on Intelligent Networks and Intelligent Systems,2010.
[9]Zhao Lihong,Zhang Xili,Xu Xinhe.Face recognition base on KPCA with polynomial krnel[C].Beijing,China:Proceedings of the 2007 International Conference on Wavelet Analysis and Pattern Recognition,2007.
[10]Du G,Zhu W J.Face recognition method based on singular value decomposition and fuzzy decision[J].Journal of Image and Graphics,2006,11(10):1456-1459.
[11]吴成东,樊玉泉,张云洲,等.基于改进KPCA算法的车牌字符识别方法[J].东北大学学报:自然科学版,2008,29(5):629-632.
[12]Gopi E S,Palanisamy P.Fast computation of PCA bases of image subspace using its inner-product subspace[J].Applied Mathematics and Computation,2013,21(9):6729-6732.
[13]邓乃扬,田英杰.数据挖掘中的新方法—支持向量机[M].北京:科学出版社,2004.
[14]Martinez A,Benavente R.The AR face database[R].MA USA:Technical Report Computer Vision Center,1998. |