›› 2015, Vol. 28 ›› Issue (2): 46-.

• 论文 • 上一篇    下一篇

基于混合核函数的快速KPCA人脸识别算法

穆新亮   

  1. (西安电子科技大学 数学与统计学院,陕西 西安 710126)
  • 出版日期:2015-02-15 发布日期:2015-02-16
  • 作者简介:穆新亮(1988—),男,硕士研究生。研究方向:最优化方法与理论,机器学习理论及其算法应用。E-mail:muxinliang168@163.com

A Fast KPCA Face Recognition Algorithm Based on Mixed Kernel Function

MU Xinliang   

  1. (School of Mathematics and Statistics,Xidian University,Xi'an 710071,China)
  • Online:2015-02-15 Published:2015-02-16

摘要:

为提高人脸识别的速率和识别率,文中提出一种基于混合核函数的快速核主成分分析算法用于进行人脸识别,首先构造两种混合核函数,利用均值矢量的方法构建核矩阵,并利用文中提出的核主成分分析算法计算核矩阵的特征向量。分别在ORL和AR人脸数据库中做了相关实验,并且与传统的核主成分分析方法在识别率和算法运行时间上进行了比较,结果表明,文中所提核主成分分析方法具有较高的识别率和更短的运行时间,从而为实时地具有大数据的人脸识别系统提供技术支持。

关键词: 人脸识别, 特征提取, 主成分分析, 核主成分分析, 核函数

Abstract:

In order to improve the speed and recognition rate of face recognition,the paper proposes a fast kernel principal component analysis based on the mixed kernel principal component analysis (FKPCA) algorithm for face recognition.First we construct two kinds of mixed kernel functions,use the mean vector to build kernel matrix,and then use the proposed kernel principal component analysis algorithm to compute the eigenvectors of the kernel matrix.A large number of experiments are performed on ORL and AR face database,respectively,and a comparison is made between the traditional methods of kernel principal component analysis in their recognition rates and running time.The results show that the proposed kernel principal component analysis has higher recognition rate and shorter operational time,which provides supports for real-time face recognition system in the big data era.

Key words: face recognition;feature extraction;principal component analysis;kernel principal component analysis;kernel function

中图分类号: 

  • TP391.41