›› 2016, Vol. 29 ›› Issue (3): 30-.

• 论文 • 上一篇    下一篇

基于改进小波包变换的音频指纹提取算法

朱洁,邓开发   

  1. (1.上海理工大学 光电信息与计算机工程学院,上海 200093;2.上海工程技术大学 艺术设计学院,上海 200093)
  • 出版日期:2016-03-15 发布日期:2016-03-18
  • 作者简介:朱洁(1991—),女,硕士研究生。研究方向:音频指纹技术等。邓开发(1965—),男,博士,教授,硕士生导师。研究方向:光信息与计算机处理等。
  • 基金资助:

    南京市领军型科技创业人才引进计划基金资助项目(2014A090002)

An Approach to Audio Fingerprinting Extraction Based on Improved Wavelet Packet

ZHU Jie,DENG Kaifa   

  1. (1.School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;
    2.School of Art and Design,Shanghai University of Engineering Science,Shanghai 201620,China)
  • Online:2016-03-15 Published:2016-03-18

摘要:

数字音频指纹技术在音频信号分析和处理中起着重要作用。针对传统基于时频分析的音频指纹提取算法中仅使用信号能量作为特征参数,而无法全面表征出信号的复杂度和不规则性问题,提出了基于小波包分解与重构,将小波包系数的奇异值熵和样本熵相结合,作为音频信号的特征参数提取指纹。实验证明,该算法提取的指纹提高了音频识别的准确率,在常见信号处理下能保持较强的鲁棒性,并具有明显的区分音频和定位音频篡改位置的能力。

关键词: 音频指纹, 小波包分解, 奇异值熵, 样本熵, 特征提取

Abstract:

Digital audio fingerprinting technology plays an important role in the audio analysis and processing.Aiming at the problem that the traditional audio fingerprinting is extracted based on time frequency analysis using the energy of signal as a single feature parameter that can not fully characterize the complexity and irregularity,the paper proposes a method for audio fingerprinting extraction based on wavelet packet decomposition and reconstruction and combining the sample entropy of wavelet packet coefficients and the entropy singular value as a signal characteristic parameters to extract audio fingerprinting.Experimental results show that the proposed algorithm is accurate in audio recognition,robust in common audio signal operations,and capable of distinguishing different audio and locate tampered position.

Key words: audio fingerprinting;wavelet packet decomposes;entropy of singular values;sample entropy;feature extraction

中图分类号: 

  • TP391