电子科技 ›› 2020, Vol. 33 ›› Issue (11): 36-40.doi: 10.16180/j.cnki.issn1007-7820.2020.11.007

• • 上一篇    下一篇

基于人工鱼群算法和LS_SVM的变压器故障诊断

杨宇,曾国辉,黄勃   

  1. 上海工程技术大学 电子电气工程学院,上海 201620
  • 收稿日期:2019-08-20 出版日期:2020-11-15 发布日期:2020-11-27
  • 作者简介:杨宇(1995-),男,硕士研究生。研究方向:系统故障诊断、智能算法。|曾国辉(1975-),男,博士,副教授。研究方向:电力电子及其控制技术。|黄勃(1985-),男,博士,讲师。研究方向:需求工程、软件工程、人工智能。
  • 基金资助:
    国家自然科学基金(61603242);江西省经济犯罪侦查与防控技术协同创新中心开放课题(JXJZXTCX-030)

A Transformer Fault Diagnosis Method Integrating Artificial Fish Swarm Algorithm with Least Square Support Vector Machine

YANG Yu,ZENG Guohui,HUANG Bo   

  1. School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201600,China
  • Received:2019-08-20 Online:2020-11-15 Published:2020-11-27
  • Supported by:
    National Natural Science Foundation of China(61603242);Jiangxi Province Economic Crime Investigation and Collaborative Innovation Center of Prevention and Control Technology(JXJZXTCX-030)

摘要:

针对变压器故障数据的特征信息不确定性以及传统诊断方法准确率较低的问题,文中采用人工鱼群算法和最小二乘支持向量机相结合的方法来进行变压器故障诊断。将IECTC10数据库中的DGA特征气体比值作为输入,建立基于最小二乘支持向量机的变压器故障诊断模型,并运用人工鱼群算法对最小二乘支持向量机的参数进行优化选取。然后根据诊断结果,选出分类效果最佳的多比值特征参量组合。实验验证结果显示,文中所提出的诊断方法准确率可达96.67%,拥有更高的故障诊断正确率。

关键词: 最小二乘支持向量机, 故障诊断, 人工鱼群算法, 变压器, DGA, IECTC10数据库

Abstract:

In view of the information uncertainty of transformer fault data and the low accuracy of traditional diagnostic methods, the combination of artificial fish swarm algorithm and least squares support vector machine is used to diagnose transformer fault. The DGA characteristic gas ratios of IECTC10 database is used as the input vectors, and the fault diagnosis model of transformers is designed based on LS_SVM. Meanwhile, the artificial fish swarm algorithm is utilized to optimize the parameters of the least squares support vector machine. Then, based on the diagnosis result, the multi-ratio characteristic parameter combination with the best classification effect is selected. The experimental verification results show that the accuracy of the proposed diagnostic method was up to 96.67%, and it has a higher accuracy rate of fault diagnosis.

Key words: least square support vector machine, fault diagnosis, artificial fish swarm algorithm, power transformer, DGA, IECTC10 database

中图分类号: 

  • TP181