电子科技 ›› 2020, Vol. 33 ›› Issue (11): 79-83.doi: 10.16180/j.cnki.issn1007-7820.2020.11.015

• • 上一篇    下一篇

基于深度学习的人体骨架动作识别

邬倩,吴飞,骆立志   

  1. 上海工程技术大学 电子电气工程学院,上海 201620
  • 收稿日期:2019-07-31 出版日期:2020-11-15 发布日期:2020-11-27
  • 作者简介:邬倩(1994-),女,硕士研究生。研究方向:机器学习和模式识别。|吴飞(1968-),男,教授。研究方向:计算机与多媒体。
  • 基金资助:
    国家自然科学基金(61272097);上海市科技学术委员会重点项目(18511101600)

Human Skeleton-based Action Recognition Based on Deep Learning

WU Qian,WU Fei,LUO Lizhi   

  1. School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China
  • Received:2019-07-31 Online:2020-11-15 Published:2020-11-27
  • Supported by:
    National Natural Science Foundation of China(61272097);Key Projects of Shanghai Science and Technology Academic Committee(18511101600)

摘要:

基于人体骨架的动作识别具有鲁棒性和视点不变性的优点,为进一步提高骨架动作识别的识别率,打破以往大部分基于深度学习的方法的输入内容为人体关节坐标的局限性,文中提出一种将几何特征与LSTM网络结合的人体骨架动作识别算法。该算法选择基于关节与选定直线之间距离的几何特征作为网络的输入,引入了一种时间选择LSTM网络进行训练。利用时间选择LSTM网络拥有选出最具识别性时间段特征的能力,在SBU Interaction数据集和UT Kinect数据集上分别取得了99.36%和99.20%的识别率。实验结果证明了该方法对人体骨架动作识别的有效性。

关键词: 动作识别, 人体骨架, 深度学习, 几何特征, 时间选择, LSTM网络

Abstract:

Based on the advantages of robustness and view-invariant representation, a skeleton-based action recognition algorithm combining geometric features with LSTM network is proposed to further improve the recognition rate and to break the limitation that the inputs of most methods based on deep learning are human joint coordinates. The geometric features based on the distances between joints and selected lines are selected as the input of the network. Then, time-selective LSTM network is introduced to train. Time selection LSTM network has the ability to select the most recognizable time period features. By using this feature, 99.36% and 99.20% recognition rates are achieved on SBU Interaction dataset and UT Kinect dataset, respectively. The experimental results show that the method is effective for human skeleton-based action recognition.

Key words: action recognition, human skeleton, deep learning, geometric features, time selective modal, Long Short-term Memory networks

中图分类号: 

  • TP391