电子科技 ›› 2020, Vol. 33 ›› Issue (2): 25-31.doi: 10.16180/j.cnki.issn1007-7820.2020.02.005

• • 上一篇    下一篇

基于视频的人脸检测算法研究

汪欣,吴薇,曾照   

  1. 杭州电子科技大学 电子信息学院,浙江 杭州 310018
  • 收稿日期:2019-01-18 出版日期:2020-02-15 发布日期:2020-03-12
  • 作者简介:汪欣(1995-),女,硕士研究生。研究方向:图像处理、计算机视觉。|吴薇(1963-),男,博士,教授。研究方向:嵌入式系统设计、模式识别与计算机视觉。|曾照(1995-),女,硕士研究生。研究方向:图像处理、模式识别。
  • 基金资助:
    国家自然科学基金国际(地区)合作与交流资助项目(61411136003)

Research on Face Detection Algorithm Based on Video

WANG Xin,WU Wei,ZENG Zhao   

  1. School of Electronic Information,Hangzhou Dianzi University,Hangzhou 310018,China
  • Received:2019-01-18 Online:2020-02-15 Published:2020-03-12
  • Supported by:
    National Natural Science Foundation International Regional Cooperation and Exchange Funding Project(61411136003)

摘要:

针对传统AdaBoost算法在视频中检测人脸误检率较高的问题,文中提出了一种结合运动分析和肤色检验的改进型人脸检测算法。该方法通过运动检测来提取运动前景,并选择肤色模型对人脸肤色进行相似度求取,利用几何特征进一步缩小检测范围;采用增加新Haar特征和改进权重更新方式的改进型AdaBoost算法对人脸候选区域进行实时检测。实验结果表明,与传统AdaBoost方法和增加肤色检验的AdaBoost方法相比,该方法的误检率分别降低了18.68%和8.79%,检测时间则分别缩短约800 ms和250 ms。

关键词: 人脸检测, 运动检测, 肤色模型, AdaBoost算法, Haar特征, 权重更新

Abstract:

Aiming at the shortcomings of the traditional AdaBoost algorithm in detecting high false detection rate in video, an improved face detection algorithm combining motion analysis and skin color detection was proposed. The proposed method extracted motion prospects through motion detection, and selected the skin color model to obtain the similarity of the face skin color, and further narrowed the detection range by using the geometric features. The face candidate region was detected in real time detection the improved AdaBoost algorithm which was added with new Haarfeatures and improved weight update mode.The experimental results showed that compared with the traditional AdaBoost method and the AdaBoost method with skin color detection, the false detection rate of this method was reduced by 18.68% and 8.79% respectively, and the detection time was shortened by about 800 ms and 250 ms, respectively.

Key words: face detection, motion analysis, skin color model, AdaBoost algorithm, Haar feature, weight update

中图分类号: 

  • TP391.41