[1] |
曾凯, 丁世飞 . 图像超分辨率重建的研究进展[J]. 计算机工程与应用, 2017,53(16):29-35.
|
|
Zeng Kai, Ding Shifei . Advances in image super-resolution reconstruction[J]. Computer Engineering and Applica-tions, 2017,53(16):29-35.
|
[2] |
沈丽, 韩彦芳 . 基于稀疏表示的超分辨率图像重建[J]. 电子科技, 2015,28(9):144-148
|
|
Shen Li, Han Yanfang . Image super-resolution reconstruction based on sparse representatio[J]. Electronic Science and Technology, 2015,28(9):144-148.
|
[3] |
Irani M, Peleg S . Super resolution from image sequences[J]. ICPR-C, 1990,90(11):115-120.
|
[4] |
李影, 徐伯庆 . 一种基于压缩感知的迭代重建算法[J]. 电子科技, 2016,29(11):129-134.
|
|
Li Ying, Xu Boqing . An iterative image reconstruction algorithm based on compressed sensing[J]. Electronic Science and Technology, 2016,29(11):129-134.
|
[5] |
Li Y M, Pedrycz W . Fuzzy finite qutomata and fuzzy regular expressions with membership values in lattice ordered monoids[J]. Fuzzy Sets and Systems, 2005,156(10):68-92.
|
[6] |
张磊, 杨建峰, 薛彬 , 等. 改进的最大后验概率估计法实现单幅图像超分辨率重建[J]. 激光与光电子学进展, 2011,48(1):78-85.
|
|
Zhang Lei, Yang Jianfeng, Xue Bin , et al. Modified MAP algorithm for single frame super-resolution reconstruction[J]. Laser & Optoelectronics Progress, 2011,48(1):78-85.
|
[7] |
Chang H, Yeung D Y, Xiong Y. Super-resolution through neighbor embedding [C]. Washington DC:Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004.
|
[8] |
Gao X, Zhang K, Tao D , et al. Image super-resolution with sparse neighbor embedding[J]. IEEE Transactions on Image Processing, 2012,21(7):78-85.
|
[9] |
Timofte R, De V, Gool L V. Anchored neighborhood regression for fast example-based super-resolution [C]. Sydney:IEEE International Conference on Computer Vision, 2013.
|
[10] |
Yang J, Wright J, Huang T S et al.Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010,19(7):2861-2873.
|
[11] |
Dong C, Loy C C, He K , et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Anal Mach Intell, 2014,38(2):295-307.
|
[12] |
Dong C, Deng Y, Chen C L, et al. Compression artifacts reduction by a deep convolutional network [C]. Santiago:IEEE International Conference on Computer Vision, 2015.
|
[13] |
王一宁, 秦品乐, 李传朋 , 等. 基于残差神经网络的图像超分辨率改进算法[J]. 计算机应用, 2018,22(1):246-254.
|
|
Wang Yining, Qin Pinle, Li Chuanpeng . Improved algorithm of image super resolution based on residual neural network[J]. Journal of Computer Applications, 2018,22(1):246-254.
|
[14] |
Kim J, Lee J K, Lee K M. Accurate image super-resolution using very deep convolutional networks [C]. Las Vegas:Computer Vision and Pattern Recognition, 2016.
|
[15] |
Iandola F N, Han S. SqueezeNet:AlexNet-level accuracy with 50× fewer parameters and <0.5MB model size [C]. San Juan:International Conference on Learning Representations, 2016.
|
[16] |
He Kaiming, Sun Jian. Convolutional neural networks at constrained time cost [C]. Boston:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.
|
[17] |
Timofte R, De V, Gool L V. Anchored neighborhood regression for fast example-based super-resolution [C]. Sydney:Processing of the IEEE International Conference on Computer Vision, 2013.
|
[18] |
周壮, 鲍伟龙 . 超分辨率成像系统的FPGA控制研究[J]. 电子科技, 2011,24(10):122-126.
|
|
Zhou Zhuang, Bao Weilong . Research on FPGA control in super-resolution color imaging system[J]. Electronic Science and Technology, 2011,24(10):122-126.
|