电子科技 ›› 2020, Vol. 33 ›› Issue (8): 74-79.doi: 10.16180/j.cnki.issn1007-7820.2020.08.013

• • 上一篇    下一篇

基于WiFi-BP的室内定位算法

朱轶峰   

  1. 上海农业物联网工程技术研究中心 主任办,上海 200335
  • 收稿日期:2019-05-23 出版日期:2020-08-15 发布日期:2020-08-24
  • 作者简介:朱轶峰(1974-),男,高级工程师。研究方向:物联网、大数据、智能农业。
  • 基金资助:
    上海市科技兴农重点攻关项目沪农科攻字2014第7-4-1号

Indoor Positioning Algorithm Based on WiFi-BP

ZHU Yifeng   

  1. Director’s Office,Shanghai Engineering Research Center of Agriculture IOT,Shanghai 200335,China
  • Received:2019-05-23 Online:2020-08-15 Published:2020-08-24
  • Supported by:
    Shanghai Key Project of Science and Technology Agriculture (Hu Nongke Attacking Words (2014) 7-4-1)

摘要:

针对设备差异性造成信号偏差从而影响定位精度的问题,提出了一种结合BP神经网络和加权质心定位算法的室内定位算法。文中通过离群点检测算法对不同手机的RSSI数据进行清洗,并以清洗后的数据作为BP神经网络的数据源进行模型训练,得到了一种稳定的非线性的BP模型。在此基础上,结合改进的室内定位算法进行室内定位。实验结果表明,文中所提定位算法的均值误差、最小误差和最大误差分别为为0.58 m、0.24 m和1.06 m,定位精度明显高于现有的同类算法。

关键词: 设备差异性, 接收信号强度指示, 室内定位, BP神经网络, 离群点检测, 加权质心定位

Abstract:

Aiming at the problem that signal deviation caused by the device variability affects positioning accuracy, an indoor positioning algorithm combining BP neural network and weighted centroid positioning algorithm was proposed. In this paper, the RSSI data of different mobile phones were cleaned by outlier detection algorithm, and the cleaned data was used as the data source of BP neural network to train the model, thus obtaining a stable nonlinear BP model. On this basis, combined with the improved indoor positioning algorithm for indoor positioning. Experiment results showed the mean error, minimum error and maximum error of the proposed algorithm were 0.58 m, 0.24 m and 1.06 m, respectively, and the positioning accuracy was significantly higher than that of the existing similar algorithms.

Key words: the device variability, received signal strength indication, indoorpositioning, BP neural network, the outlier detection, weighted centroid positioning

中图分类号: 

  • TN92