电子科技 ›› 2022, Vol. 35 ›› Issue (12): 1-9.doi: 10.16180/j.cnki.issn1007-7820.2022.12.001

• •    下一篇

一种基于随机交叠策略的多突变点在线检测方法

朱俊俊,齐金鹏,钟金美,任晴,曹一彤   

  1. 东华大学 信息科学与技术学院,上海 201620
  • 收稿日期:2021-05-07 出版日期:2022-12-15 发布日期:2022-12-13
  • 作者简介:朱俊俊(1996-),男,硕士研究生。研究方向:大数据异常检测。|齐金鹏(1977-),男,博士,副教授。研究方向:大数据异常检测、图像处理。
  • 基金资助:
    国家自然科学基金(61305081);国家自然科学基金(61104154);上海市自然科学基金(16ZR1401300);上海市自然科学基金(16ZR1401200)

An Online-Method of Multiple Change Points Detection Based on Random and Overlapping Strategy

ZHU Junjun,QI Jinpeng,ZHONG Jinmei,REN Qing,CAO Yitong   

  1. College of Information Science and Technology,Donghua University,Shanghai 201620,China
  • Received:2021-05-07 Online:2022-12-15 Published:2022-12-13
  • Supported by:
    National Natural Science Foundation of China(61305081);National Natural Science Foundation of China(61104154);Natural Science Foundation of Shanghai(16ZR1401300);Natural Science Foundation of Shanghai(16ZR1401200)

摘要:

传统的突变点检测方法多以离线为主,无法对大规模的时序数据进行在线检测。针对这一问题,文中基于缓冲区模型和滑动窗口随机交叠策略,提出一种多突变点在线检测方法。该方法以TSTKS算法和滑动窗口模型为基础,通过缓冲区模型实时接收在线时序数据流,并将数据转移到数据接收器中;随后,在数据接收器中使用滑动窗口随机交叠策略对数据流进行切分;最后,在子数据流中用TSTKS算法对数据进行多突变点在线检测。仿真数据和癫痫病人的肌电数据等实验结果表明,文中所提方法具有时耗较短、准确率较高等优点,可作为大规模时序数据流的在线分析备选方案。

关键词: 突变点检测, 交叠理论, 缓冲区, 在线算法, 滑动窗口, 时序数据, 大数据分析, 多路搜索树

Abstract:

The traditional detection methods of multiple change points are mainly off-line, and cannot detect large-scale time series data online. To solve this problem, this study proposes an online detection method of multiple change points based on the buffer model and the sliding window random overlapping strategy. This method is based on TSTKS algorithm and sliding window model, receives online time series data stream in real time through buffer model, and transfers the data to the data receiver. Subsequently, the data stream is segmented using a sliding window random overlap strategy in the data sink. Finally, in the sub-data stream, TSTKS algorithm is used to perform online detection of multiple change points on the data. The experimental results of simulation data and EMG data of epilepsy patients show that the proposed method has the advantages of shorter time consumption and higher accuracy, and can be considered as an alternative for online analysis of large-scale time series data streams.

Key words: multiple change points detection, overlapping theory, the buffer, online algorithm, sliding window, time series data, big data analysis, ternary search tree

中图分类号: 

  • TP311