电子科技 ›› 2022, Vol. 35 ›› Issue (12): 10-16.doi: 10.16180/j.cnki.issn1007-7820.2022.12.002

• • 上一篇    下一篇

基于LSTM-Attention的P300事件相关电位识别分类研究

王夏霖,阚秀,范艺璇   

  1. 上海工程技术大学 电子电气工程学院,上海 201620
  • 收稿日期:2021-05-11 出版日期:2022-12-15 发布日期:2022-12-13
  • 作者简介:王夏霖(1997-),男,硕士研究生。研究方向:图像处理、数据分析。|阚秀(1983-),女,博士,副教授。研究方向:智能感知、智能控制、数据分析。
  • 基金资助:
    国家自然科学基金(61703270)

Classification and Recognition of P300 Event-Related Potential Based on LSTM-Attention Network

WANG Xialin,KAN Xiu,FAN Yixuan   

  1. School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China
  • Received:2021-05-11 Online:2022-12-15 Published:2022-12-13
  • Supported by:
    National Natural Science Foundation of China(61703270)

摘要:

针对脑电信号中P300事件相关电位识别分类准确率较低的问题,文中提出了一种基于LSTM-Attention网络的P300事件相关电位的识别分类方法。在数据处理阶段使用SMOTE对脑电信号中P300电位数据进行数据增广,并基于DBSCAN聚类算法剔除合成数据中的无关噪声。在识别分类阶段,通过在LSTM网络后加入注意力机制和Dropout层搭建LSTM-Attention分类识别网络,并使用Sigmoid函数输出P300事件相关电位的识别分类结果。实验结果表明,文中方法能够有效对脑电信号中的P300事件相关电位进行识别分类,准确率和Dice系数均值分别达到了91.9%和91.7%,与传统方法相比准确性更高、泛化性能更强。

关键词: P300事件相关电位, 脑电信号, 长短期记忆网络, 注意力机制, 数据处理, 合成上采样, 密度聚类, 识别分类

Abstract:

In view of the problem of low recognition and classification accuracy of P300 event-related potentials in EEG signals, a recognition and classification method of P300 event-related potentials based on LSTM-Attention network is proposed in this study. In the data processing stage, SMOTE is utilized to augment P300 potential data in EEG signals, and irrelevant noise in synthetic data is eliminated based on DBSCAN clustering algorithm. In the identification and classification stage, an LSTM-Attention classification and identification network is built by adding an attention mechanism and a Dropout layer after the LSTM network, and the Sigmoid function is used to output the identification and classification results of the P300 event-related potential. The experimental results show that the proposed method can effectively recognize and classify P300 event-related potentials in EEG signals, and the average accuracy and Dice coefficient are up to 91.9% and 91.7%, respectively. Compared with traditional methods, the accuracy is higher and the generalization performance is stronger.

Key words: P300 event-related potential, EEG, LSTM, attention mechanism, data processing, SMOTE, DBSCAN, recognition and classification

中图分类号: 

  • TP391