[1] |
孟小飞. P300脑电信号的特征提取与分类研究[D]. 杭州: 杭州电子科技大学, 2020.
|
|
Meng Xiaofei. Feature extraction and classification of P300 signal[D]. Hangzhou: Hangzhou Dianzi University, 2020.
|
|
孔丽文, 薛召军, 陈龙, 等. 基于虚拟现实环境的脑机接口技术研究进展[J]. 电子测量与仪器学报, 2015, 29(3):317-327.
|
|
Kong Liwen, Xue Zhaojun, Chen Long, et al. Review of brain-computer interface technology based on virtual reality environment[J]. Journal of Electronic Measurement and Instrumentation, 2015, 29(3):317-327.
|
[2] |
王根, 方慧娟, 罗登. 基于事件相关电位的BCI新型输入系统研究[J]. 信息技术与网络安全, 2013, 32(7):66-68.
|
|
Wang Gen, Fang Huijuan, Luo Deng. Study on the new input of BCI system based on ERP[J]. Information Technology and Network Security, 2013, 32(7):66-68.
|
[3] |
闫秘. 基于P300-EEG分类的多域融合技术研究[D]. 长春: 长春理工大学, 2020.
|
|
Yan Mi. Research on multi-domain fusion technology based on P300 EEG classification[D]. Changchun: Changchun University of Science and Technology, 2020.
|
[4] |
马征, 邱天爽. 视觉ERP脑机接口中实验范式的研究进展[J]. 中国生物医学工程学报, 2016, 35(1):96-104.
|
|
Ma Zheng, Qiu Tianshuang. A review of experimental paradigms in visual event-related potential-based brain computer interfaces[J]. Chinese Journal of Biomedical Engineering, 2016, 35(1):96-104.
|
[5] |
Bostanov V. BCI competition 2003-data sets Ib and IIb:Feature extraction from event-related brain potentials with the continuous wavelet transform and the t-value scalogram[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6):1057-1061.
doi: 10.1109/TBME.2004.826702
|
[6] |
Xu N, Gao X R, Hong B, et al. BCI Competition 2003-data set IIb: Enhancing P300 wave detection using ICA-based subspace projections for BCI applications[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6):1067-1072.
doi: 10.1109/TBME.2004.826699
|
[7] |
潘家辉, 冯宝. 脑机接口中脑电信号的特征提取和模式分类[J]. 计算机系统应用, 2015, 24(8):268-272.
|
|
Pan Jiahui, Feng Bao. Feature extraction and pattern classification for EEG in brain-computer interface[J]. Computer Systems and Applications, 2015, 24(8):268-272.
|
[8] |
Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002(16):321-357.
|
[10] |
Farwell L A, Donchin E. Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials[J]. Electroencephalography & Clinical Neurophysiology, 1988, 70(6):510-523.
|
[11] |
Blankertz B, Müller K R, Krusienski D J, et al. The BCI competition III: Validating alternative approaches to actual BCI problems[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2006, 14(2):153-159.
pmid: 16792282
|
[12] |
贺玲, 吴玲达, 蔡益朝. 数据挖掘中的聚类算法综述[J]. 计算机应用研究, 2007(1):10-13.
|
|
He Ling, Wu Lingda, Cai Yichao. Survey of clustering algorithms in data mining[J]. Application Research of Computers, 2007(1):10-13.
|
[13] |
祁鑫, 王福忠, 张丽, 等. 基于SVD-LSTM的高校学生宿舍空调负荷预测[J]. 电子科技, 2020, 33(11):59-66.
|
|
Qi Xin, Wang Fuzhong, Zhang Li, et al. Air conditioning load forecast of university students' dormitory based on SVD-LSTM[J]. Electronic Science and Technology, 2020, 33(11):59-66.
|
[14] |
刘嘉琛, 秦小麟, 朱润泽. 基于LSTM-Attention的RFID移动对象位置预测[J]. 计算机科学, 2021, 48(3):188-195.
doi: 10.11896/jsjkx.200600134
|
|
Liu Jiachen, Qin Xiaolin, Zhu Runze. Prediction of RFID mobile object location based on LSTM-Attention[J]. Computer Science, 2021, 48(3):188- 195.
doi: 10.11896/jsjkx.200600134
|
[15] |
葛靖, 刘子龙. 基于CNN和LSTM的睡眠呼吸暂停检测算法[J]. 电子科技, 2021, 34(2):21-26.
|
|
Ge Jing, Liu Zilong. The algorithm based on CNN and LSTM for sleep apnea syndrome detection[J]. Electronic Science and Technology, 2021, 34(2):21-26.
|
[16] |
Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1):1929-1958.
|
[17] |
魏华栋, 陶媛, 蔡昌春, 等. 基于改进长短期记忆神经网络的短期负荷预测[J]. 电测与仪表, 2020, 57(19):93-98.
|
|
Wei Huadong, Tao Yuan, Cai Changchun, et al. Short-term load forecasting based on improved long short-term memory neural network[J]. Electrical Measurement & Instrumentation, 2020, 57(19):93-98.
|
[18] |
赵兵, 王增平, 纪维佳, 等. 基于注意力机制的CNN-GRU短期电力负荷预测方法[J]. 电网技术, 2019, 43(12):4370-4376.
|
|
Zhao Bing, Wang Zengping, Ji Weijia, et al. A short-term power load forecasting method based on attention mechanism of CNN-GRU[J]. Power System Technology, 2019, 43(12): 4370-4376.
|