电子科技 ›› 2022, Vol. 35 ›› Issue (7): 40-45.doi: 10.16180/j.cnki.issn1007-7820.2022.07.007

• • 上一篇    下一篇

基于改进特征提取及融合模块的YOLOv3模型

赵轩,周凡,余汉成   

  1. 南京航空航天大学 电子信息工程学院,江苏 南京 211106
  • 收稿日期:2021-01-21 出版日期:2022-07-15 发布日期:2022-08-16
  • 作者简介:赵轩(1996-),男,硕士研究生。研究方向:目标检测、抓取框检测。|周凡(1996-),男,硕士研究生。研究方向:深度学习、信号分类。|余汉成(1979-),男,副教授。研究方向:图像处理、图像识别。
  • 基金资助:
    教育部重点实验室基金(UASP2001)

Improved YOLOv3 Model Based on New Feature Extraction and Fusion Module

ZHAO Xuan,ZHOU Fan,YU Hancheng   

  1. College of Electronic and Information Engineering,Nanjing University of Aeronautics and Astronautics, Nanjing 211106,China
  • Received:2021-01-21 Online:2022-07-15 Published:2022-08-16
  • Supported by:
    Open Research Fund of Key Laboratory of Ministry of Education(UASP2001)

摘要:

YOLOv3模型的特征提取分支和多尺度检测分支存在一定的优化空间。针对这一问题,文中提出了两种结构改进方法来提升该模型在目标检测数据集上的检测精度。对YOLOv3模型的3个尺度(13×13,26×26,52×52)之间采用不同长宽的先验锚框,其3个尺度的标注框相同,可通过设计尺度间的特征融合方式来提升模型的准确率。针对卷积层空域视野共享的问题,可将原始卷积层替换为可变形卷积来提升模型的准确率。在工业工具库上的测试结果证明,改进模型的测试集准确率相对于原始YOLOv3提升了3.6个MAP。

关键词: 目标检测, 深度学习, 多尺度融合, 工业工具检测, 残差模块, YOLOv3, IOU损失

Abstract:

There is a certain optimization space for the feature extraction branch and multi-scale detection branch of YOLOv3 model. To solve this problem, this study proposes two structural improvement methods to improve the detection accuracy of the model on the target detection data set. For the three scales (13×13, 26×26, 52×52) of the YOLOv3 model, a priori anchor frames of different lengths and widths are used, and the label frames of the three scales are the same, and the feature fusion method between the design scales is used to improve the accuracy of the model. In view of the problem of convolutional layer spatial view sharing, the original convolutional layer can be replaced with deformable convolution to improve the accuracy of the model. The test result on the industrial tool library proves that the accuracy of the test set of the improved model is increased by 3.6 MAP when compared with the original YOLOv3.

Key words: object detection, deep learning, multiscale fusion, industrial tool detection, residual module, YOLOv3, IOU loss

中图分类号: 

  • TP274