[1] |
Zhang X, Li P, Huang B, et al. Numerical investigation on the thermal behavior of cylindrical lithiumion batteries based on the electrochemical-thermal coupling model[J]. International Journal of Heat and Mass Transfer, 2022, 19(9):123449-123456.
|
[2] |
蒋芹, 张轩雄. 电动汽车锂离子电池模型参数辨识和荷电状态估算[J]. 电子科技, 2020, 33(2):32-36.
|
|
Jiang Qin, Zhang Xuanxiong. Parameter identification and state of charge estimation of lithium ion battery model for electric vehicles[J]. Electronic Science and Technology, 2020, 33(2):32-36.
|
[3] |
Jow T R, Delp S A, Allen J L, et al. Factors limiting Li+charge transfer kinetics in Liion batteries[J]. Journal of the Electrochemical Society, 2018, 165(2):361-367.
|
[4] |
Niu C, Lee H, Chen S, et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles[J]. Nature Energy, 2019, 4(7):551-559.
|
[5] |
Schedlbauer T, Krüger S, Schmitz R, et al. Lithium difluoro(oxalato)borate:A promising salt for lithium metal based secondary batteries?[J]. Electrochimica Acta, 2013, 92(7):102-107.
|
[6] |
Bai P, Li J, Brushett F R, et al. Transition of lithium growth mechanisms in liquid electrolytes[J]. Energy and Environmental Science, 2016, 9(10):3221-3229.
|
[7] |
Bhattacharyya R, Key B, Chen H, et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries[J]. Nature Materials, 2010, 9(6):504-510.
doi: 10.1038/nmat2764
pmid: 20473288
|
[8] |
Steiger J, Kramer D, Mönig R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium[J]. Journal of Power Sources, 2014, 26(1):112-119.
|
[9] |
Cheng J H, Assegie A A, Huang C J, et al. Visualization of lithium plating and stripping via in operando transmission X-ray microscopy[J]. Journal of Physical Chemistry C, 2017, 121(14):7761-7766.
|
[10] |
Oh K Y, Epureanu B I. A novel thermal swelling model for a rechargeable lithiumion battery cell[J]. Journal of Power Sources, 2016, 30(3):86-96.
|
[11] |
Fu R, Xiao M, Choe S Y. Modeling, validation and analysis of mechanical stress generation and dimension changes of a pouch type high power Li-ion battery[J]. Journal of Power Sources, 2013, 22(4):211-224.
|
[12] |
Luo P, Li P, Ma D, et al. A novel capacity fade model of Lithiumion cells considering the influence of stress[J]. Journal of the Electrochemical Society, 2021, 168(9):537-542.
|
[13] |
Luo P, Li P, Ma D, et al. Coupled electrochemical-thermal-mechanical modeling and simulation of lithiumion batteries[J]. Journal of the Electrochemical Society, 2022, 169(10):535-542.
|
[14] |
Ariyoshi K, Yamamoto Y. Dilatometric study of thickness change of lithiummetal electrode during cycling[J]. Journal of Power Sources, 2022, 53(3):60-69.
|
[15] |
Tippmann S, Walper D, Balboa L, et al. Low-temperaturecharging of lithiumion cells part I:Electrochemical modeling and experimental investigation of degradati-onbehavior[J]. Journal of Power Sources, 2014, 25(2):305-316.
|
[16] |
Kupper C, Bessler W G. Multiscale thermo-electroche-mical modeling of performance and aging of a LiFe-PO4Graphite lithiumion cell[J]. Journal of the Electrochemical Society, 2016, 164(2):304-320.
|
[17] |
Awarke A, Pischinger S, Ogrzewalla J. Pseudo 3D modeling and analysis of the SEI growth distribution in large format Liion polymer pouch cells[J]. Journal of the Electrochemical Society, 2013, 160(1):172-181.
|
[18] |
Kindermann F M, Keil J, Frank A, et al. A SEI modeling approach distinguishing between capacity and power fade[J]. Journal of the Electrochemical Society, 2017, 164(12):287-294.
doi: 10.1149/2.0321712jes
|
[19] |
Keil J, Jossen A. Electrochemical modeling of linear and nonlinear aging of Lithiumion cells[J]. Journal of the Electrochemical Society, 2020, 167(11):535-548.
|