[1] |
郭成威, 田书, 刘明杭. 含氢储能的多源联合发电系统调度研究[J]. 电子科技, 2023, 36(2):61-66.
|
|
Guo Chengwei, Tian Shu, Liu Minghang. Research on dispatching of multi-soucre combined power generation system containing hydrogen energy storage[J]. Electronic Science and Technology, 2023, 36(2):61-66.
|
[2] |
Doyle M, Fuller T F, Newman J. Modeling of galva-no-static charge and discharge of the Lithium/Polymer/Insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6):1526-1533.
|
[3] |
Doyle M, Newman J. The use of mathematical modeling in the design of Lithium/Polymer battery systems[J]. Electrochimica Acta, 1995, 40(13):2191-2196.
|
[4] |
Pals C R, Newman J. Thermalmodeling of the Lithium/Polymer battery:Discharge behavior of a single cell[J]. Journal of the Electrochemical Society, 1995, 142(10):3274-3281.
|
[5] |
Pals C R, Newman J. Thermalmodeling of the Lithium/Polymer battery:Temperature profiles in a cell stack[J]. Journal of the Electrochemical Society, 1995, 142(10):3282-3288.
|
[6] |
Sato N. Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles[J]. Journal of Power Sources, 2001, 99(1):70-77.
|
[7] |
Ye Y H, Shi Y X, Cai N S, et al. Electrothermal modeling and experimental validation for lithium-ion battery[J]. Journal of Power Sources, 2012, 19(9):227-238.
|
[8] |
Ye Y H, Shi Y X, Andrew A O. Electrothermal cycle life model for lithium-ion phosphate battery[J]. Journal of Power Sources, 2012, 21(7):509-518.
|
[9] |
Zhang X Q, Li P C, Huang B X, et al. Numerical investigation on the thermal behavior of cylindrical lithium-ion batteries based on the electrochemical-thermal coupling model[J]. International Journal of Heat and Mass Transfer, 2022, 19(9):123449-123456.
|
[10] |
Christensen J, Newman J. Stress generation and fracturein lithium insertion materials[J]. Journal of Solid State Electrochemistry, 2006, 10(5):293-319.
|
[11] |
Zhang X C, Wei S, Ann M S. Numerical simulation of intercalation-induced stress in liion battery electrode particles[J]. Journal of the Electrochemical Society, 2007, 154(10):910-916.
|
[12] |
Golmon S, Maute K, Dunn M L. Numerical modeling of electrochemical-mechanical interactions in lithium polymer batteries[J]. Computers and Structures, 2009, 87(23):1567-1579.
|
[13] |
Yang S C, Hua Y, Qiao D, et al. A coupled electrochemical-thermal-mechanical degradation modelling approach for lifetime assessment of lithium-ion batteries[J]. Electrochimica Acta, 2019, 32(6):13492-13500.
|
[14] |
Luo P F, Li P C, Ma D Z, et al. A novel capacity fade model of lithium-ion cells considering the influence of stress[J]. Journal of the Electrochemical Society, 2021, 168(9):537-549.
|
[15] |
Luo P F, Li P C, Ma D Z, et al. Coupled electrochemical-thermal-mechanical modeling and simulation of lithium-ion batteries[J]. Journal of the Electrochemical Society, 2022, 169(10):535-539.
|
[16] |
Duan X T, Wen J J, Zou Y L, et al. A coupled electroc-hemical-thermal-mechanical model for spiral-wound lithium-ion batteries[J]. Journal of Materials Science, 2018, 53(15):10987-11001.
|
[17] |
Keil J, Jossen A. Electrochemicalmodeling of linear and nonlinear aging of lithium-ion cells[J]. Journal of the Electrochemical Society, 2020, 167(11):535-550.
|
[18] |
ValoøEn L O, Reimers J N. Transportproperties of LiP-F[sub 6]-based lithium-ion battery electrolytes[J]. Journal of the Electrochemical Society, 2005, 152(5):882-891.
|
[19] |
Bernardi D M, Go J Y. Analysis of pulse and relaxation behavior in lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(1):412-427.
|
[20] |
Kumaresan K, Sikha G, White R E. Thermalmodel for a lithium-ion cell[J]. Journal of the Electrochemical Society, 2008, 155(2):164-171.
|