[1] |
杨云辉, 徐连江. 面向高精度机械加工的有限元分析技术研究综述[J]. 电子科技, 2022, 35(11):98-103.
|
|
Yang Yunhui, Xu Lianjiang. Summary of finite element analysis technology for high precision machining[J]. Electronic Science and Technology, 2022, 35(11):98-103.
|
[2] |
汪中厚, 赵超凡. 基于接触有限元的斜齿轮传动误差仿真与修形[J]. 电子科技, 2017, 30(12):59-61,66.
|
|
Wang Zhonghou, Zhao Chaofan. Study of helical gear transmission error simulation and modification by using contact finite element analysis method[J]. Electronic Science and Technology, 2017, 30(12):59-61,66.
|
[3] |
林磊, 徐德城, 陈志林, 等. 锰铜阻尼合金在管道壳壁振动缓解中的应用[J]. 噪声与振动控制, 2021, 41(4):221-227.
doi: 10.3969/j.issn.1006-1355.2021.04.034
|
|
Lin Lei, Xu Decheng, Chen Zhilin, et al. Application of Mn-Cu damping alloy in pipe shell-wall vibration mitigation[J]. Noise and Vibration Control, 2021, 41(4):221-227.
doi: 10.3969/j.issn.1006-1355.2021.04.034
|
[4] |
朱锐, 杨雨迎, 毛保全, 等. 锰铜基阻尼合金广义分数阶M-axwell本构模型[J]. 兵工学报, 2021, 42(6):1290-1302.
|
|
Zhu Rui, Yang Yuying, Mao Baoquan, et al. Generalized fractional Maxwell constitutive model of Mn-Cu damping alloy[J]. Acta Armamentarii, 2021, 42(6):1290-1302.
|
[5] |
朱锐, 毛保全, 赵俊严, 等. 机枪遥控武器站锰铜基阻尼合金缓冲器非线性有限元分析及试验[J]. 北京理工大学学报, 2022, 42(9):935-946.
|
|
Zhu Rui, Mao Baoquan, Zhao Junyan, et al. The nonlinear finite element analysis and experiment of Mn-Cu damping alloy buffer for remote control weapon station[J]. Transactions of Beijing Institute of Technology, 2022, 42(9):935-946.
|
[6] |
Stachurski Z H. Mechanical behavior of materials[J]. Materials Today, 2009, 12(3):44-49.
|
[7] |
朱智, 张立文, 顾森东. Hastelloy C-276合金应力松弛试验及蠕变本构方程[J]. 中国有色金属学报, 2012, 22(4):1063-1067.
|
|
Zhu Zhi, Zhang Liwen, Gu Sendong. Stress relaxation test of Hastelloy C-276 alloy and its creep constitutive equation[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(4):1063-1067.
|
[8] |
朱智, 张立文, 宋冠宇, 等. Hastelloy C-276合金应力松弛行为的研究[J]. 稀有金属材料与工程, 2012, 41(4):697-700.
|
|
Zhu Zhi, Zhang Liwen, Song Guanyu, et al. Study on stress relaxation behavior of Hastelloy C-276 alloy[J]. Rare Metal Materials and Engineering, 2012, 41(4):697-700.
|
[9] |
毕静, 崔学习, 张艳苓, 等. Ti-6Al-4V钛合金薄板应力松弛行为研究[J]. 机械工程学报, 2019, 55(18):43-52,62.
doi: 10.3901/JME.2019.18.043
|
|
Bi Jing, Cui Xuexi, Zhang Yanling, et al. Investigations on stress relaxation behavior of Ti-6Al-4V titanium alloy sheet[J]. Journal of Mechanical Engineering, 2019, 55(18):43-52,62.
doi: 10.3901/JME.2019.18.043
|
[10] |
郝江江. Mn-Cu合金阻尼特性和减振特性分析[D]. 成都: 西南交通大学, 2017:16-17.
|
|
Hao Jiangjiang. Study on damping performance and vibration behavior of Mn-Cu alloy[D]. Chengdu: Southwest Jiaotong University, 2017:16-17.
|
[11] |
郝顺平. 高锰阻尼合金的制备及性能研究[D]. 镇江: 江苏大学, 2018:32-33.
|
|
Hao Shunping. Study on preparation and properties of high manganese damping alloy[D]. Zhenjiang: Jiangsu University, 2018:32-33.
|
[12] |
Wei L, Li Q, Zhang X, et al. Remarkable improvement indamping capacity of M2052 alloy by stepcooling treatment[J]. Materials Research Express, 2021, 8(1):16526-16533.
|
[13] |
佘彩凤. 金属变形滞后回弹的本构模型UMAT二次开发及有限元分析[D]. 北京: 北京理工大学, 2015:11-15.
|
|
She Caifeng. UMAT secondary development of constitutive equation and finite element analysis for metallic time-dependent springback after deformation[D]. Beijing: Beijing Institute of Technology, 2015:11-15.
|
[14] |
周梦雨, 李凡珠, 杨海波, 等. 基于非线性黏弹性本构模型的轮胎滚动和生热[J]. 高分子材料科学与工程, 2020, 36(3):73-78.
|
|
Zhou Mengyu, Li Fanzhu, Yang Haibo, et al. Tire rolling and heat generation based on nonlinear viscoelastic model ofparallel rheological framework[J]. Polymer Materials Science and Engineering, 2020, 36(3):73-78.
|
[15] |
周梦雨, 李凡珠, 杨海波, 等. 橡胶材料的非线性黏弹性本构方程[J]. 高分子材料科学与工程, 2020, 36(3):79-84.
|
|
Zhou Mengyu, Li Fanzhu, Yang Haibo, et al. A nonlinear viscoelastic constitutive equation based on parallel rheological framework for rubber materials[J]. Polymer Materials Science and Engineering, 2020, 36(3):79-84.
|
[16] |
中国钢铁工业协会. GB/T 10120-2013.金属材料拉伸应力松弛试验方法[S]. 北京: 中国标准出版社, 2013.
|
|
China Iron and Steel Association. GB/T 10120-2013.Test method for tensile stress relaxation of metallic materials[S]. Beijing: China Standards Press, 2013.
|
[17] |
杨啸. 丙烯基弹性体力学松弛行为和结构演化[D]. 合肥: 中国科学技术大学, 2021:36-37.
|
|
Yang Xiao. Strain dependent evolution of structure and stress in propylene-based elastomer during stressr-elaxation[D]. Hefei: University of Science and Technology of China, 2021:36-37.
|
[18] |
荣继纲, 黄友剑, 卜继玲, 等. 隔振橡胶材料基于简单应变模式的蠕变特性研究[J]. 橡胶工业, 2022, 69(7):506-511.
|
|
Rong Jigang, Huang Youjian, Bu Jiling, et al. Research on creep characteristics of damping rubber materials on simple strain mode[J]. China Rubber Industry, 2022, 69(7):506-511.
|
[19] |
Karim M, Zhang Z, Zhu Y. Prediction of nonlinear viscoelastic recovery of thermoplastic polymers using abaqus parallel rheological framework model[C]. Santa Clara: Simulia User Meeting, 2016:6-7.
|
[20] |
徐一航, 李道奎, 周仕明, 等. 基于并行流变框架HTPB推进剂本构模型研究[J]. 推进技术, 2022, 43(9):403-410.
|
|
Xu Yihang, Li Daokui, Zhou Shiming, et al. HTPB propellant constitutive model based on parallel rheological framework[J]. Journal of Propulsion Technology, 2022, 43(9):403-410.
|