›› 2016, Vol. 29 ›› Issue (6): 75-.

• 论文 • 上一篇    下一篇

基于支持向量机的窄带雷达弹道导弹目标识别技术

魏文博,蔡红军   

  1. (中国电子科技集团公司第38研究所,安徽 合肥 230088)
  • 出版日期:2016-06-15 发布日期:2016-06-22
  • 作者简介:魏文博(1979-),男,博士,高级工程师。研究方向:雷达总体设计及反导预警雷达技术。 蔡红军(1982-),男,博士,工程师。研究方向:雷达图像处理及雷达目标识别。
  • 基金资助:

    国家高技术研究发展计划“863”基金项目(2014AA7052010)

Narrowband Radar Ballistic Missile Target Recognition Technology Based on SVM

WEI Wenbo,CAI Hongjun   

  1. (No. 38 Research Institute of CETC, Hefei 230088, China)
  • Online:2016-06-15 Published:2016-06-22

摘要:

窄带雷达由于受到带宽限制,无法获取到目标高分辨精细识别信息,仅能通过目标轨道运动特征和窄带RCS特征对目标属性进行初步分类识别,文中基于支持向量机分类算法,从窄带雷达回波数据中提取弹头群和弹体群目标的特征,实现了弹道导弹群目标初步分类识别。在对弹头群和弹体群分类识别的基础上,窄带雷达可集中更多的时间和能量资源重点对弹头群类目标进行跟踪,并为后续宽带目标识别雷达提供重点目标位置信息。

关键词: 支持向量机, 窄带, 目标识别, 雷达, 弹道导弹

Abstract:

Subject to radar bandwidth, the narrowband radar cant obtain the information of highresolution structure of targets. In case of the narrowband radar, targets are classified only by characteristics of orbital motion and Rradar Cross Section (RCS). In this paper, characteristics of missile warhead group and body group are extracted, and missile targets from a narrowband radar experiment data are classified using Support Vector Machine (SVM). After classification of missile warhead group and body group, the narrowband radar can track missile warhead group using more time and energy. In the meantime, the location of the main target can provide for broadband identification radar.

Key words: support vector machine, narrowband, target recognition, radar, ballistic missile

中图分类号: 

  • TN958