电子科技 ›› 2020, Vol. 33 ›› Issue (4): 18-22.doi: 10.16180/j.cnki.issn1007-7820.2020.04.004

• • 上一篇    下一篇

基于深度学习与特征融合的人脸识别算法

司琴,李菲菲,陈虬   

  1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 收稿日期:2019-03-01 出版日期:2020-04-15 发布日期:2020-04-23
  • 作者简介:司琴(1996-),女,硕士研究生。研究方向:模式识别与机器视觉|李菲菲(1970 -),女,博士,教授。研究方向:多媒体信息处理、图像处理与模式识别、信息检索等。|陈虬(1972-),男,博士,教授,博士生导师。研究方向:图像处理与模式识别,计算机视觉,信息检索等。
  • 基金资助:
    上海市高校特聘教授(东方学者)岗位计划(ES2015XX)

Face Recognition Algorithm Based on Deep Learning and Feature Fusion

SI Qin,LI Feifei,CHEN Qiu   

  1. School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • Received:2019-03-01 Online:2020-04-15 Published:2020-04-23
  • Supported by:
    Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning(ES2015XX)

摘要:

卷积神经网络在人脸识别研究上有较好的效果,但是其提取的人脸特征忽略了人脸的局部结构特征。针对此问题,文中提出一种基于深度学习与特征融合的人脸识别方法。该算法将局部二值模式信息与原图信息相结合作为SDFVGG网络的输入,使得提取的人脸特征更加丰富且更具表征能力。其中,SDFVGG网络是将VGG网络进行深浅特征相融合后的网络。在CAS-PEAL-R1人脸数据库上的实验表明,将网络深浅特征相融合与在卷积神经网络中加入LBP图像信息与原图信息相融合的特征信息对于提高人脸识别准确率非常有效,可得到优于传统算法和一般卷积神经网络的最高98.58%人脸识别率。

关键词: 特征提取, 特征融合, 卷积神经网络, SDFVGG, 局部二值模式, 人脸识别

Abstract:

The convolutional neural network performed well on face recognition, but the extracted facial feature ignores the local structure features of the face. In order to address this problem, a novel method was proposed, which was based on deep learning and feature fusion. This algorithm made the extracted facial features more comprehensive by using a combination of local binary pattern information and original image information as the input of SDFVGG network, which was a neuralnetwork fusing shallow and deep features of VGG network. Experimental results on the CAS-PEAL-R1 face database demonstrated that the proposed algorithm was very effective for improving the accuracy of face recognition, and achieved a maximum face recognition rate of 98.58% which was better than traditional algorithms and general convolutional neural networks.

Key words: feature extraction, feature fusion, convolutional neural network, SDFVGG, local binary pattern, face recognition

中图分类号: 

  • TP391