[1] |
吴学谦, 李菲菲, 颜艳 , 等. 基于局部二值模式及马尔科夫稳态特征的人脸识别[J]. 电子科技, 2018,31(8):18-20,24.
|
|
Wu Xueqian, Li Feifei, Yan Yan , et al. Face recognition algorithm using LBP and MSF features[J]. Electronic Science and Technology, 2018,31(8):18-20,24.
|
[2] |
Lihong Z, Fei L, Yongjun W . Face recognition based on LBP and genetic algorithm[C]. Yinchuan:2016 Chinese Control and Decision Conference (CCDC), 2016.
|
[3] |
Zhang J, Xiao X . Face recognition algorithm based on multi-layer weighted LBP[C]. Hangzhou:8th International Symposium on Computational Intelligence and Design (ISCID), 2015.
|
[4] |
Bengio Y, Delalleau O . Onthe expressive power of deep architectures[C]. Espoo:Discovery Science 14th International Conference , 2011.
|
[5] |
Wang M, Wang Z, Li J . Deep convolutional neural network applies to face recognition in small and medium databases[C]. Hangzhou:4th International Conference on Systems and Informatics (ICSAI), 2017.
|
[6] |
Lecun Y, Bengio Y, Hinton G . Deep learning[J]. Nature, 2015,521(7553):436-446.
doi: 10.1038/nature14539
pmid: 26017442
|
[7] |
Syaffeza A R, Khalil-Hani M, Liew S S , et al. Convolutional neural network for face recognition with pose and illumination variation[J]. International Journal of Engineering & Technology, 2014,6(1):44-57.
|
[8] |
Yan K, Huang S, Song Y , et al. Face recognition based on convolution neural network[C]. Dalian:Chinese Control Conference, 2017.
|
[9] |
Gu S, Ding L . A complex-valued VGG network based deep learing algorithm for image recognition[C]. Wanzhou: Ninth International Conference on Intelligent Control and Information Processing (ICICIP), 2018.
|
[10] |
Russakovsky O, Deng J, Su H , et al. ImageNetlarge scale visual recognition challenge[J]. International Journal of Computer Vision, 2014,115(3):211-252.
doi: 10.1007/s11263-015-0816-y
|
[11] |
Dahl G E, Sainath T N, Hinton G E . Improving deep neural networks for LVCSR using rectified linear units and dropout[C]. Vancouver:IEEE International Conference onAcoustics, 2013.
|
[12] |
Gao W, Member S, Cao B , et al. The CASPEAL large-scale chinese face database and baseline evaluations[J]. IEEE Trans on System Man & Cybernetics, 2008,38(1):149-161.
|
[13] |
Xie S, Shan S, Chen X , et al. Learned local Gabor patterns for face representation and recognition[J]. Signal Processing, 2009,89(12):2333-2344.
doi: 10.1109/TPAMI.2013.112
pmid: 24356350
|
[14] |
Zhang B, Shan S, Chen X , et al. Histogramof Gabor Phase Patterns (HGPP):a novel object representation approach for face recognition[J]. IEEE Transactions on Image Processing, 2007,16(1):57-68.
doi: 10.1109/tip.2006.884956
pmid: 17283765
|
[15] |
Farajzadeh N, Faez K, Pan G . Study on the performance of moments as invariant descriptors for practical face recognition systems[J]. IET Computer Vision, 2010,4(4):272-285.
doi: 10.1049/iet-cvi.2009.0140
|
[16] |
Tan H, Yang B, Ma Z . Face recognition based on the fusion of global and local HOG features of face images[J]. IET Computer Vision, 2014,8(3):224-234.
doi: 10.1049/iet-cvi.2012.0302
|