[1] |
Sherif S M G, Ibrahim B M T. A new approach of DGA interpretation technique for transformer fault diagnosis[J]. International Journal of Electrical Power and Energy System, 2016,81(7):265-274.
|
[2] |
汪可, 李金忠, 张书琦, 等. 变压器故障诊断用油中溶解气体新特征参量[J]. 中国电机工程学报, 2016,36(23):6570-6578.
|
|
Wang Ke, Li Jinzhong, Zhang Shuqi, et al. New features derived from dissolved gas analysis for fault diagnosis of power transformers[J]. Proceedings of the CSEE, 2016,23(36):6570-6578.
|
[3] |
刘景艳, 王福忠, 杨占山. 基于RBF神经网络和自适应遗传算法的变压器故障诊断[J]. 武汉大学学报(工学版), 2016,49(1):88-93.
|
|
Liu Jingyan, Wang Fuzhong, Yang Zhanshan. Transformer fault diagnosis based on RBF neural network and adaptive genetic algorithm[J]. Engineering Journal of Wuhan University, 2016,49(1):88-93.
|
[4] |
谷凯凯, 郭江. 紧致融合模糊集和故障树的变压器故障诊断[J]. 高电压技术, 2014,40(5):1507-1512.
|
|
Gu Kaikai, Guo Jiang. Transformer fault diagnosis method based on compact fusion of fuzzy set and fault tree[J]. High Voltage Engineering, 2014,40(5):1507-1512.
|
[5] |
岑健, 李玉娜. 无量纲免疫支持向量机的复合故障诊断方法[J]. 计算机工程与应用, 2013,49(15):259-262.
|
|
Cen Jian, Li Yuna. Complex fault diagnosis using dimensionless immune support vector machine[J]. Computer Engineeringand Applications, 2013,49(15):259-262.
|
[6] |
Kim S W, Kim S J, Seo H D, et al. New methods of DGA diagnosis using IEC TC10 and related databases Part 1:application of gas-ratio combinations[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013,20(2):685-690.
|
[7] |
Duval M, dePabla A. Interpretation of gas-in-oil analysis using new IEC publication 60599 and IECTC10 databases[J]. IEEE Electrical Insulation Magazine, 2001,17(2):31-41.
|
[8] |
Zheng H B, Liao R J, Grzybowski S, et al. Fault diagnosis of power transformers using multi-class least square support vector machines classifiers with particle swarm optimization[J]. IET Electric Power Application, 2011,5(9):691-696.
|
[9] |
李赢, 舒乃秋. 基于模糊聚类和完全二叉树支持向量机的变压器故障诊断[J]. 电工技术学报, 2016,31(4):64-70.
|
|
Li Ying, Shu Naiqiu. Transformer fault diagnosis based on fuzzy clustering and complete binary tree support vector machine[J]. Transactions of China Electrotechnical Society, 2016,31(4):64-70.
|
[10] |
Benmahamed Y, Teguar M, Boubakeur A. Application of SVM and KNN to duval pentagon 1 for transformer oil diagnosis[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017,24(6):3443-3451.
|
[11] |
宗剑韬. 考虑供电区域差异的配电网可靠性成本效益分析与应用研究[D]. 北京:华北电力大学, 2017.
|
|
Zong Jiantao. Cost-effectiveness analysis and application of distribution network reliability considering regional differences in power supply[D]. Beijing:North China Electric Power University, 2017.
|
[12] |
韩平, 王天堃, 孟永毅. 基于LS-SVM的一次风机振动在线监测及故障预警研究[J]. 机电工程, 2016,33(5):629-632.
|
|
Han Ping, Wang Tiankun, Meng Yongyi. Research of LS-SVM based method for online monitoring and fault prediction of primary air fan vibration[J]. Journal of Mechanical and Electrical Engineering, 2016,33(5):629-632.
|
[13] |
高国磊, 李英娜, 段效琛, 等. 基于ACO优化LS_SVM的变压器故障诊断[J]. 电子科技, 2018,31(6):59-61.
|
|
Gao Guolei, Li Yingna, Duan Xiaochen, et al. A fault diagnosis method for transformer based on least squares support vector machine optimized by ant colony optimization[J]. Electronic Science and Technology, 2018,31(6):59-61.
|
[14] |
邱云飞, 李智义. 改进人工鱼群算法在SVM参数优化中的应用[J]. 计算机工程与科学, 2018,40(11):2074-2079.
|
|
Qiu Yunfei, Li Zhiyi. An improved artificial fish swarm algorithm and its application for SVM parameter optimization[J]. Computer Engineering & Science, 2018,40(11):2074-2079.
|
[15] |
郑含博, 王伟, 李晓纲, 等. 基于多分类最小二乘支持向量机和改进粒子群优化算法的电力变压器故障诊断方法[J]. 高电压技术, 2014,40(11):3424-3429.
|
|
Zheng Hanbo, Wang Wei, Li Xiaogang, et al. Fault diagnosis method of power transformers using multi-class LS-SVM and improved PSO[J]. High Voltage Engineering, 2014,40(11):3424-3429.
|
[16] |
洪洁, 王璐, 汪超, 等. 基于人工鱼群算法优化SVM的部动作sEMG识别[J]. 传感器与微系统, 2016,35(2):23-25.
|
|
Hong Jie, Wang Lu, Wang Chao, et al. Recognition of sEMG hand actions based on artificial fish swarm algorithm optimized SVM[J]. Transducer and Microsystem Technologies, 2016,35(2):23-25.
|